File size: 3,719 Bytes
35af015
98bdd9f
 
 
35af015
98bdd9f
35af015
98bdd9f
 
35af015
98bdd9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35af015
 
 
 
98bdd9f
 
35af015
 
98bdd9f
 
35af015
98bdd9f
35af015
98bdd9f
 
 
 
 
35af015
98bdd9f
 
 
 
35af015
 
98bdd9f
 
 
 
 
 
 
 
 
 
 
 
 
 
35af015
98bdd9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35af015
98bdd9f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import gradio as gr
from transformers import AutoTokenizer, AutoModel
# from MMD_calculate import mmd_two_sample_baseline  # Adjust path based on your structure
# from utils_MMD import extract_features  # Example helper from your utils

MINIMUM_TOKENS = 64

def count_tokens(text, tokenizer):
    return len(tokenizer(text).input_ids)

def run_test_power(model_name, tokenizer_name, real_text, generated_text, N):
    """
    Runs the test power calculation for provided real and generated texts.
    """

    # load tokenizer and model
    tokenizer = AutoTokenizer.from_pretrained(model_name).cuda()
    model = AutoModel.from_pretrained(model)

    if count_tokens(real_text, tokenizer) < MINIMUM_TOKENS or count_tokens(generated_text, tokenizer) < MINIMUM_TOKENS:
        return "Too short length. Need minimum 64 tokens to calculated Test Power."

    # Extract features
    fea_real_ls = extract_features(model_name, tokenizer_name, [real_text])
    fea_generated_ls = extract_features(model_name, tokenizer_name, [generated_text])

    #  Calculate test power list
    test_power_ls = mmd_two_sample_baseline(fea_real_ls, fea_generated_ls, N=10)

    # Compute the average test power value
    power_test_value = sum(test_power_ls) / len(test_power_ls)

    # Classify the text
    if power_test_value < threshold:
        return "Prediction: Human"
    else:
        return "Prediction: AI"



css = """
#header { text-align: center; font-size: 1.5em; margin-bottom: 20px; }
#output-text { font-weight: bold; font-size: 1.2em; }
"""

# Gradio App
with gr.Blocks(css=css) as app:
    with gr.Row():
        gr.HTML('<div id="header">Human or AI Text Detector</div>')
    with gr.Row():
        gr.Markdown(
            """
            [Paper](https://openreview.net/forum?id=z9j7wctoGV) | [Code](https://github.com/xLearn-AU/R-Detect) | [Contact](mailto:[email protected])
            """
        )
    with gr.Row():
        input_text = gr.Textbox(
            label="Input Text",
            placeholder="Enter the text to check",
            lines=8,
        )
    with gr.Row():
        model_name = gr.Dropdown(
            ["gpt2-medium", "gpt2-large", "t5-large", "t5-small", "roberta-base", "roberta-base-openai-detector", "falcon-rw-1b"],
            label="Select Model",
            value="gpt2-medium",
        )
    with gr.Row():
        submit_button = gr.Button("Run Detection", variant="primary")
        clear_button = gr.Button("Clear", variant="secondary")
    with gr.Row():
        output = gr.Textbox(
            label = "Prediction",
            placeholder = "Prediction: Human or AI",
            elem_id = "output-text",
        )
    with gr.Accordion("Disclaimer", open=False):
        gr.Markdown(
            """
            - **Disclaimer**: This tool is for demonstration purposes only. It is not a foolproof AI detector.
            - **Accuracy**: Results may vary based on input length and quality.
            """
        )
    with gr.Accordion("Citations", open=False):
        gr.Markdown(
            """
            ```
            @inproceedings{zhangs2024MMDMP,
                title={Detecting Machine-Generated Texts by Multi-Population Aware Optimization for Maximum Mean Discrepancy},
                author={Zhang, Shuhai and Song, Yiliao and Yang, Jiahao and Li, Yuanqing and Han, Bo and Tan, Mingkui},
                booktitle = {International Conference on Learning Representations (ICLR)},
                year={2024}
            }
            ```
            """
        )
    submit_button.click(detect_text, inputs=[input_text, model_name], outputs=output)
    clear_button.click(lambda: ("", ""), inputs=[], outputs=[input_text, output])

app.launch()