Spaces:
Runtime error
Runtime error
Update demo.py
Browse files
demo.py
CHANGED
@@ -1,56 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModel
|
3 |
-
from utils_MMD import extract_features # Adjust the import path
|
4 |
-
from MMD_calculate import mmd_two_sample_baseline # Adjust the import path
|
5 |
-
|
6 |
-
MINIMUM_TOKENS = 64
|
7 |
-
THRESHOLD = 0.5 # Threshold for classification
|
8 |
-
|
9 |
-
def count_tokens(text, tokenizer):
|
10 |
-
"""
|
11 |
-
Counts the number of tokens in the text using the provided tokenizer.
|
12 |
-
"""
|
13 |
-
return len(tokenizer(text).input_ids)
|
14 |
|
|
|
15 |
def run_test_power(model_name, real_text, generated_text, N=10):
|
16 |
-
""
|
17 |
-
Runs the test power calculation for provided real and generated texts.
|
18 |
-
|
19 |
-
Args:
|
20 |
-
model_name (str): Hugging Face model name.
|
21 |
-
real_text (str): Example real text for comparison.
|
22 |
-
generated_text (str): The input text to classify.
|
23 |
-
N (int): Number of repetitions for MMD calculation.
|
24 |
-
|
25 |
-
Returns:
|
26 |
-
str: "Prediction: Human" or "Prediction: AI".
|
27 |
-
"""
|
28 |
-
# Load tokenizer and model
|
29 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
30 |
-
model = AutoModel.from_pretrained(model_name).cuda()
|
31 |
-
model.eval()
|
32 |
-
|
33 |
-
# Ensure minimum token length
|
34 |
-
if count_tokens(real_text, tokenizer) < MINIMUM_TOKENS or count_tokens(generated_text, tokenizer) < MINIMUM_TOKENS:
|
35 |
-
return "Too short length. Need a minimum of 64 tokens to calculate Test Power."
|
36 |
-
|
37 |
-
# Extract features
|
38 |
-
fea_real_ls = extract_features([real_text], tokenizer, model)
|
39 |
-
fea_generated_ls = extract_features([generated_text], tokenizer, model)
|
40 |
-
|
41 |
-
# Calculate test power list
|
42 |
-
test_power_ls = mmd_two_sample_baseline(fea_real_ls, fea_generated_ls, N=N)
|
43 |
-
|
44 |
-
# Compute the average test power value
|
45 |
-
power_test_value = sum(test_power_ls) / len(test_power_ls)
|
46 |
-
|
47 |
-
# Classify the text
|
48 |
-
if power_test_value < THRESHOLD:
|
49 |
-
return "Prediction: Human"
|
50 |
-
else:
|
51 |
-
return "Prediction: AI"
|
52 |
|
53 |
-
# CSS for custom styling
|
54 |
css = """
|
55 |
#header { text-align: center; font-size: 1.5em; margin-bottom: 20px; }
|
56 |
#output-text { font-weight: bold; font-size: 1.2em; }
|
@@ -95,28 +48,8 @@ with gr.Blocks(css=css) as app:
|
|
95 |
placeholder="Prediction: Human or AI",
|
96 |
elem_id="output-text",
|
97 |
)
|
98 |
-
with gr.Accordion("Disclaimer", open=False):
|
99 |
-
gr.Markdown(
|
100 |
-
"""
|
101 |
-
- **Disclaimer**: This tool is for demonstration purposes only. It is not a foolproof AI detector.
|
102 |
-
- **Accuracy**: Results may vary based on input length and quality.
|
103 |
-
"""
|
104 |
-
)
|
105 |
-
with gr.Accordion("Citations", open=False):
|
106 |
-
gr.Markdown(
|
107 |
-
"""
|
108 |
-
```
|
109 |
-
@inproceedings{zhangs2024MMDMP,
|
110 |
-
title={Detecting Machine-Generated Texts by Multi-Population Aware Optimization for Maximum Mean Discrepancy},
|
111 |
-
author={Zhang, Shuhai and Song, Yiliao and Yang, Jiahao and Li, Yuanqing and Han, Bo and Tan, Mingkui},
|
112 |
-
booktitle = {International Conference on Learning Representations (ICLR)},
|
113 |
-
year={2024}
|
114 |
-
}
|
115 |
-
```
|
116 |
-
"""
|
117 |
-
)
|
118 |
submit_button.click(
|
119 |
-
run_test_power, inputs=[model_name, "
|
120 |
)
|
121 |
clear_button.click(lambda: ("", ""), inputs=[], outputs=[input_text, output])
|
122 |
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
# Mock function for testing layout
|
4 |
def run_test_power(model_name, real_text, generated_text, N=10):
|
5 |
+
return "Prediction: Human (Mocked)"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
7 |
css = """
|
8 |
#header { text-align: center; font-size: 1.5em; margin-bottom: 20px; }
|
9 |
#output-text { font-weight: bold; font-size: 1.2em; }
|
|
|
48 |
placeholder="Prediction: Human or AI",
|
49 |
elem_id="output-text",
|
50 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
submit_button.click(
|
52 |
+
run_test_power, inputs=[model_name, "Example real text", input_text], outputs=output
|
53 |
)
|
54 |
clear_button.click(lambda: ("", ""), inputs=[], outputs=[input_text, output])
|
55 |
|