import gradio as gr import spaces # TOKENIZER = # MINIMUM_TOKENS = 64 # def count_tokens(text): # return len(TOKENIZER(text).input_ids) # Mock function for testing layout def run_test_power(model_name, real_text, generated_text, N=10): return f"Prediction: Human (Mocked for {model_name})" # Change mode name #def change_mode(mode): # if mode == "Faster Model": # .change_mode("t5-small") # elif mode == "Medium Model": # .change_mode("roberta-base-openai-detector") # elif mode == "Powerful Model": # .change_mode("falcon-rw-1b") # else: # gr.Error(f"Invaild mode selected.") # return mode css = """ #header { text-align: center; font-size: 3em; margin-bottom: 20px; } #output-text { font-weight: bold; font-size: 1.2em; } .links { display: flex; justify-content: flex-end; gap: 10px; margin-right: 10px; align-items: center; } .separator { margin: 0 5px; color: black; } /* Adjusting layout for Input Text and Inference Result */ .input-row { display: flex; width: 100%; } .input-text { flex: 3; /* 4 parts of the row */ margin-right: 1px; } .output-text { flex: 1; /* 1 part of the row */ } /* Set button widths to match the Select Model width */ .button { width: 250px; /* Same as the select box width */ height: 100px; /* Button height */ } /* Set height for the Select Model dropdown */ .select { height: 100px; /* Set height to 100px */ } /* Accordion Styling */ .accordion { width: 100%; /* Set the width of the accordion to match the parent */ max-height: 200px; /* Set a max-height for accordion */ overflow-y: auto; /* Allow scrolling if the content exceeds max height */ margin-bottom: 10px; /* Add space below accordion */ box-sizing: border-box; /* Ensure padding is included in width/height */ } /* Accordion content max-height */ .accordion-content { max-height: 200px; /* Limit the height of the content */ overflow-y: auto; /* Add a scrollbar if content overflows */ } """ # Gradio App with gr.Blocks(css=css) as app: with gr.Row(): gr.HTML('') with gr.Row(): gr.HTML(""" """) with gr.Row(): input_text = gr.Textbox( label="Input Text", placeholder="Enter Text Here", lines=8, elem_classes=["input-text"], # Applying the CSS class value="Basketball is a dynamic and widely popular sport that originated in 1891 when Dr. James Naismith, a physical education instructor, sought to keep his students active during the winter. He devised a game involving a ball and two peach baskets, laying the foundation for what would evolve into modern basketball. The objective is to score points by shooting the ball through the opposing team's hoop, a task complicated by the rules and the opposing team's defense. (This is a example from Chatgpt)" ) output = gr.Textbox( label="Inference Result", placeholder="Made by Human or AI", elem_id="output-text", lines=8, elem_classes=["output-text"], ) with gr.Row(): model_name = gr.Dropdown( [ "Faster Model", "Medium Model", "Powerful Model", ], label="Select Model", value="Medium Model", elem_classes=["select"], ) submit_button = gr.Button("Run Detection", variant="primary", elem_classes=["button"]) clear_button = gr.Button("Clear", variant="secondary", elem_classes=["button"]) submit_button.click(run_test_power, inputs=[model_name, input_text, input_text], outputs=output) clear_button.click(lambda: ("", ""), inputs=[], outputs=[input_text, output]) with gr.Accordion("Disclaimer", open=False, elem_classes=["accordion"]): gr.Markdown(""" - **Disclaimer**: This tool is for demonstration purposes only. It is not a foolproof AI detector. - **Accuracy**: Results may vary based on input length and quality. """) with gr.Accordion("Citations", open=False, elem_classes=["accordion"]): gr.Markdown(""" ``` @inproceedings{zhangs2024MMDMP, title={Detecting Machine-Generated Texts by Multi-Population Aware Optimization for Maximum Mean Discrepancy}, author={Zhang, Shuhai and Song, Yiliao and Yang, Jiahao and Li, Yuanqing and Han, Bo and Tan, Mingkui}, booktitle = {International Conference on Learning Representations (ICLR)}, year={2024} } ``` """) app.launch()