import gradio as gr # Mock function for testing layout def run_test_power(model_name, real_text, generated_text, N=10): return f"Prediction: Human (Mocked for {model_name})" # CSS to adjust layout for the text boxes and dropdown css = """ #header { text-align: center; font-size: 3em; margin-bottom: 20px; } #output-text { font-weight: bold; font-size: 1.2em; text-align: center; /* Center the text inside the box */ } /* Flex container for centering output-text */ .center-container { display: flex; flex-direction: column; justify-content: center; align-items: center; height: 400px; /* Set a fixed height for the container */ margin-top: 20px; /* Add some space above the container */ margin-bottom: 20px; /* Add some space below the container */ } .links { display: flex; justify-content: flex-end; gap: 10px; margin-right: 10px; align-items: center; } .separator { margin: 0 5px; color: black; } /* Adjusting layout for Input Text */ .input-text { width: 100%; height: 100px; font-size: 1em; } /* Set button widths to match the Select Model width */ .button { width: 250px; /* Same as the select box width */ height: 100px; /* Button height */ } /* Set height for the Select Model dropdown */ .select { height: 100px; /* Set height to 100px */ } /* Accordion Styling */ .accordion { width: 100%; /* Set the width of the accordion to match the parent */ max-height: 200px; /* Set a max-height for accordion */ overflow-y: auto; /* Allow scrolling if the content exceeds max height */ margin-bottom: 10px; /* Add space below the accordion */ box-sizing: border-box; /* Ensure padding is included in width/height */ } """ # Gradio App with gr.Blocks(css=css) as app: with gr.Row(): gr.HTML('') with gr.Row(): gr.HTML(""" """) with gr.Row(): input_text = gr.Textbox( label="Input Text", placeholder="Enter Text Here", lines=8, elem_classes=["input-text"], # Applying the CSS class ) with gr.Row(elem_classes=["center-container"]): # Parent container for centering output = gr.Textbox( label="Inference Result", placeholder="Made by Human or AI", elem_id="output-text", ) with gr.Row(): model_name = gr.Dropdown( [ "Faster Model", "Medium Model", "Powerful Model", ], label="Select Model", value="Medium Model", elem_classes=["select"], ) submit_button = gr.Button("Run Detection", variant="primary", elem_classes=["button"]) clear_button = gr.Button("Clear", variant="secondary", elem_classes=["button"]) submit_button.click(run_test_power, inputs=[model_name, input_text, input_text], outputs=output) clear_button.click(lambda: ("", ""), inputs=[], outputs=[input_text, output]) with gr.Accordion("Disclaimer", open=False): gr.Markdown(""" - **Disclaimer**: This tool is for demonstration purposes only. It is not a foolproof AI detector. - **Accuracy**: Results may vary based on input length and quality. """) with gr.Accordion("Citations", open=False): gr.Markdown(""" ``` @inproceedings{zhangs2024MMDMP, title={Detecting Machine-Generated Texts by Multi-Population Aware Optimization for Maximum Mean Discrepancy}, author={Zhang, Shuhai and Song, Yiliao and Yang, Jiahao and Li, Yuanqing and Han, Bo and Tan, Mingkui}, booktitle = {International Conference on Learning Representations (ICLR)}, year={2024} } ``` """) app.launch()