import gradio as gr import spaces # TOKENIZER = # MINIMUM_TOKENS = 64 # def count_tokens(text): # return len(TOKENIZER(text).input_ids) # Mock function for testing layout def run_test_power(model_name, real_text, generated_text, N=10): return f"Prediction: Human (Mocked for {model_name})" # Change mode name #def change_mode(mode): # if mode == "Faster Model": # .change_mode("t5-small") # elif mode == "Medium Model": # .change_mode("roberta-base-openai-detector") # elif mode == "Powerful Model": # .change_mode("falcon-rw-1b") # else: # gr.Error(f"Invaild mode selected.") # return mode css = """ #header { text-align: center; font-size: 1.5em; margin-bottom: 20px; } #output-text { font-weight: bold; font-size: 1.2em; } .links { display: flex; justify-content: flex-end; gap: 10px; margin-right: 10px; align-items: center; } .separator { margin: 0 5px; color: black; } .row { display: flex; justify-content: center; width: 100%; } .gradio-row input, .gradio-row select { width: 250px; /* Set all elements to the same width */ margin: 5px; } /* Adjusting layout for Input Text and Inference Result */ .input-row { display: flex; width: 100%; } .input-text { flex: 3; /* 4 parts of the row */ margin-right: 1px; } .output-text { flex: 1; /* 1 part of the row */ } /* Set button widths to match the Select Model width */ .button { width: 250px; /* Same as the select box width */ Height: 100px; } """ # Gradio App with gr.Blocks(css=css) as app: with gr.Row(): gr.HTML('') with gr.Row(): gr.HTML(""" """) with gr.Row(): input_text = gr.Textbox( label="Input Text", placeholder="Enter Text Here", lines=8, elem_classes=["input-text"], # Applying the CSS class ) output = gr.Textbox( label="Inference Result", placeholder="Made by Human or AI", elem_id="output-text", elem_classes=["output-text"] ) with gr.Row(): model_name = gr.Dropdown( [ "Faster Model", "Medium Model", "Powerful Model", ], label="Select Model", value="Medium Model", ) submit_button = gr.Button("Run Detection", variant="primary", elem_classes=["button"]) clear_button = gr.Button("Clear", variant="secondary", elem_classes=["button"]) submit_button.click(run_test_power, inputs=[model_name, input_text, input_text], outputs=output) clear_button.click(lambda: ("", ""), inputs=[], outputs=[input_text, output]) with gr.Accordion("Disclaimer", open=False): gr.Markdown(""" - **Disclaimer**: This tool is for demonstration purposes only. It is not a foolproof AI detector. - **Accuracy**: Results may vary based on input length and quality. """) with gr.Accordion("Citations", open=False): gr.Markdown(""" ``` @inproceedings{zhangs2024MMDMP, title={Detecting Machine-Generated Texts by Multi-Population Aware Optimization for Maximum Mean Discrepancy}, author={Zhang, Shuhai and Song, Yiliao and Yang, Jiahao and Li, Yuanqing and Han, Bo and Tan, Mingkui}, booktitle = {International Conference on Learning Representations (ICLR)}, year={2024} } ``` """) app.launch()