import gradio as gr from fastai.vision.all import * import skimage def is_cat(x): return x[0].isupper() learn = load_learner('model.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} gr.Interface(fn=predict, inputs=gr.Image(height = 512, width = 512), outputs=gr.Label(num_top_classes=3), title = "Pet Breed Classifier", description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces.", article="
", examples = ['siamese.jpg'], ).launch(share=True)