Spaces:
Runtime error
Runtime error
import math | |
import operator as op | |
import itertools as it | |
import functools as ft | |
import collections as cl | |
from pathlib import Path | |
import pandas as pd | |
import gradio as gr | |
from datasets import load_dataset | |
HDI = cl.namedtuple('HDI', 'lower, upper') | |
Parameter = cl.namedtuple('Parameter', 'name, ptype, gist') | |
# | |
# See https://cran.r-project.org/package=HDInterval | |
# | |
def hdi(values, ci=0.95): | |
values = sorted(filter(math.isfinite, values)) | |
if not values: | |
raise ValueError('Empty data set') | |
n = len(values) | |
exclude = n - math.floor(n * ci) | |
left = it.islice(values, exclude) | |
right = it.islice(values, n - exclude, None) | |
diffs = ((x, y, y - x) for (x, y) in zip(left, right)) | |
(*args, _) = min(diffs, key=op.itemgetter(-1)) | |
return HDI(*args) | |
# | |
# | |
# | |
def load(repo): | |
parameter = 'parameter' | |
dataset = load_dataset(repo) | |
return (dataset | |
.get('train') | |
.to_pandas() | |
.filter(items=[ | |
parameter, | |
'element', | |
'value', | |
]) | |
.groupby(parameter, sort=False)) | |
def parameters(groups): | |
_params = it.starmap(Parameter, ( | |
('alpha', 'prompt', 'discrimination'), | |
('beta', 'prompt', 'difficulty'), | |
('theta', 'model', 'ability'), | |
)) | |
lookup = { x.name: x for x in _params } | |
for (i, _) in groups: | |
if i in lookup: | |
yield lookup[i] | |
def get(param, group): | |
raise TypeError(type(param)) | |
def _(param: str, group): | |
return group.get_group(param) | |
def _(param: Parameter, group): | |
return get(param.name, group) | |
def summarize(param, df, ci=0.95): | |
def _aggregate(i, g): | |
values = g['value'] | |
interval = hdi(values, ci) | |
agg = { | |
param.ptype: i, | |
param.gist: values.median(), | |
'uncertainty': interval.upper - interval.lower, | |
} | |
agg.update(interval._asdict()) | |
return agg | |
groups = df.groupby('element', sort=False) | |
records = it.starmap(_aggregate, groups) | |
return pd.DataFrame.from_records(records) | |
def rank(param, df, ascending, name='rank'): | |
uncertainty = 'uncertainty' | |
df = (df | |
.sort_values(by=[param.gist, uncertainty], | |
ascending=[ascending, not ascending]) | |
.drop(columns=uncertainty) | |
.reset_index(drop=True)) | |
df.index += 1 | |
return df.reset_index(names=name) | |
def md_reader(name, prefix='_'): | |
path = Path(f'{prefix}{name.upper()}') | |
return (path | |
.with_suffix('.md') | |
.read_text()) | |
# | |
# | |
# | |
with gr.Blocks() as demo: | |
data = load('jerome-white/alpaca-irt-stan') | |
gr.Markdown('# Alpaca Item Response') | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(md_reader('readme')) | |
with gr.Column(): | |
pass | |
for i in parameters(data): | |
with gr.Row(): | |
view = rank(i, summarize(i, get(i, data)), False) | |
columns = { x: f'HDI {x}' for x in HDI._fields } | |
for i in view.columns: | |
columns.setdefault(i, i.title()) | |
view = (view | |
.rename(columns=columns) | |
.style.format(precision=4)) | |
gr.Dataframe(view, wrap=True) | |
demo.launch() | |