Spaces:
Sleeping
Sleeping
Commit
·
43baf6b
1
Parent(s):
0bb04ff
Rework of the comparison plot
Browse files
app.py
CHANGED
@@ -12,6 +12,7 @@ import seaborn as sns
|
|
12 |
import matplotlib.pyplot as plt
|
13 |
from datasets import load_dataset
|
14 |
from scipy.special import expit
|
|
|
15 |
|
16 |
from hdinterval import HDI, HDInterval
|
17 |
|
@@ -134,12 +135,6 @@ class RankPlotter(DataPlotter):
|
|
134 |
class ComparisonPlotter(DataPlotter):
|
135 |
_uncertain = 0.5
|
136 |
|
137 |
-
@staticmethod
|
138 |
-
def to_relative(hdi, ax):
|
139 |
-
(lhs, rhs) = ax.get_xlim()
|
140 |
-
length = rhs - lhs
|
141 |
-
yield from (abs(lhs - x) / length for x in hdi)
|
142 |
-
|
143 |
def __init__(self, df, model_1, model_2, ci):
|
144 |
super().__init__(compare(df, model_1, model_2))
|
145 |
self.interval = HDInterval(self.df)
|
@@ -147,41 +142,49 @@ class ComparisonPlotter(DataPlotter):
|
|
147 |
|
148 |
def draw(self, ax):
|
149 |
hdi = self.interval(self.ci)
|
|
|
150 |
|
151 |
-
ax = sns.histplot(self.df,
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
(_, color, *_) = sns.color_palette()
|
157 |
-
(xmin, xmax) = self.to_relative(hdi, ax)
|
158 |
-
linestyle = 'dashed' if self._uncertain in hdi else 'solid'
|
159 |
-
ax.axhline(y=y,
|
160 |
-
xmin=xmin,
|
161 |
-
xmax=xmax,
|
162 |
-
linestyle=linestyle,
|
163 |
-
color=color)
|
164 |
-
ax.set_xlabel('Pr(M$_{1}$ \u003E M$_{2}$)')
|
165 |
-
|
166 |
-
x = (hdi.lower + hdi.upper) / 2
|
167 |
-
ax.text(x=x,
|
168 |
-
y=y,
|
169 |
-
s=f'{self.ci:.0%} HDI',
|
170 |
-
backgroundcolor='white',
|
171 |
-
horizontalalignment='center',
|
172 |
-
verticalalignment='center')
|
173 |
|
|
|
174 |
try:
|
175 |
ci_min = self.interval.at(self._uncertain)
|
176 |
-
ax.text(x=0.
|
177 |
-
y=0.
|
178 |
-
s=f'
|
|
|
|
|
179 |
horizontalalignment='left',
|
180 |
verticalalignment='top',
|
181 |
transform=ax.transAxes)
|
182 |
except ArithmeticError:
|
183 |
pass
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
#
|
186 |
#
|
187 |
#
|
@@ -258,17 +261,17 @@ def layout(tab):
|
|
258 |
|
259 |
with gr.Row():
|
260 |
with gr.Column():
|
261 |
-
gr.Markdown('''
|
262 |
|
263 |
Probability that Model 1 is preferred to Model 2. The
|
264 |
histogram is represents the distribution of inverse
|
265 |
-
logit of the difference in model abilities. The
|
266 |
-
|
267 |
-
[highest density
|
268 |
-
interval](https://cran.r-project.org/package=HDInterval)
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
|
273 |
''')
|
274 |
with gr.Column():
|
|
|
12 |
import matplotlib.pyplot as plt
|
13 |
from datasets import load_dataset
|
14 |
from scipy.special import expit
|
15 |
+
from matplotlib.ticker import FixedLocator, StrMethodFormatter
|
16 |
|
17 |
from hdinterval import HDI, HDInterval
|
18 |
|
|
|
135 |
class ComparisonPlotter(DataPlotter):
|
136 |
_uncertain = 0.5
|
137 |
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
def __init__(self, df, model_1, model_2, ci):
|
139 |
super().__init__(compare(df, model_1, model_2))
|
140 |
self.interval = HDInterval(self.df)
|
|
|
142 |
|
143 |
def draw(self, ax):
|
144 |
hdi = self.interval(self.ci)
|
145 |
+
(c_hist, c_hdi) = sns.color_palette('colorblind', n_colors=2)
|
146 |
|
147 |
+
ax = sns.histplot(data=self.df,
|
148 |
+
stat='density',
|
149 |
+
color=c_hist)
|
150 |
+
ax.set_xlabel('logit$^{-1}$(\u03B1$_{1}$ - \u03B1$_{2}$)')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
+
self.pr(ax, hdi, c_hdi)
|
153 |
try:
|
154 |
ci_min = self.interval.at(self._uncertain)
|
155 |
+
ax.text(x=0.025,
|
156 |
+
y=0.975,
|
157 |
+
s=f'{self._uncertain} \u2208 {ci_min:.0%} HDI',
|
158 |
+
fontsize='small',
|
159 |
+
fontstyle='italic',
|
160 |
horizontalalignment='left',
|
161 |
verticalalignment='top',
|
162 |
transform=ax.transAxes)
|
163 |
except ArithmeticError:
|
164 |
pass
|
165 |
|
166 |
+
def pr(self, ax, hdi, color):
|
167 |
+
x = self.df.median()
|
168 |
+
zorder = ax.zorder - 1
|
169 |
+
|
170 |
+
(label, *_) = ax.get_xticklabels()
|
171 |
+
parts = label.get_text().split('.')
|
172 |
+
decimals = len(parts[-1]) + 1 if parts else 2
|
173 |
+
fmt = f'Pr(M$_{{{{1}}}}$ \u003E M$_{{{{2}}}}$) = {{x:.{decimals}f}}'
|
174 |
+
|
175 |
+
ax.axvline(x=x,
|
176 |
+
color=color,
|
177 |
+
linestyle='dashed')
|
178 |
+
ax.axvspan(xmin=hdi.lower,
|
179 |
+
xmax=hdi.upper,
|
180 |
+
alpha=0.15,
|
181 |
+
color=color,
|
182 |
+
zorder=zorder)
|
183 |
+
|
184 |
+
ax_ = ax.secondary_xaxis('top')
|
185 |
+
ax_.xaxis.set_major_locator(FixedLocator([x]))
|
186 |
+
ax_.xaxis.set_major_formatter(StrMethodFormatter(fmt))
|
187 |
+
|
188 |
#
|
189 |
#
|
190 |
#
|
|
|
261 |
|
262 |
with gr.Row():
|
263 |
with gr.Column():
|
264 |
+
gr.Markdown(f'''
|
265 |
|
266 |
Probability that Model 1 is preferred to Model 2. The
|
267 |
histogram is represents the distribution of inverse
|
268 |
+
logit of the difference in model abilities. The dashed
|
269 |
+
vertical line is its median. The shaded region
|
270 |
+
demarcates the chosen [highest density
|
271 |
+
interval](https://cran.r-project.org/package=HDInterval)
|
272 |
+
(HDI). The note in the upper left denotes the smallest
|
273 |
+
HDI that is inclusive of
|
274 |
+
{ComparisonPlotter._uncertain}.
|
275 |
|
276 |
''')
|
277 |
with gr.Column():
|