File size: 2,184 Bytes
a4da721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import heapq

def solve():
    file = "input.txt"
    grid = []
    with open(file, 'r') as f:
        for line in f:
            grid.append(line.strip())

    rows = len(grid)
    cols = len(grid[0])

    start = None
    end = None
    for r in range(rows):
        for c in range(cols):
            if grid[r][c] == 'S':
                start = (r, c)
            elif grid[r][c] == 'E':
                end = (r, c)

    directions = [(0, 1), (1, 0), (0, -1), (-1, 0)]  # E, S, W, N

    def is_valid(r, c):
        return 0 <= r < rows and 0 <= c < cols and grid[r][c] != '#'

    def dijkstra(start_r, start_c, part2=False):
        q = [(0, start_r, start_c, 0)]  # (cost, row, col, direction)
        visited = set()
        min_cost = float('inf')
        best_paths = set()

        while q:
            cost, r, c, d = heapq.heappop(q)

            if (r, c, d) in visited:
                continue
            visited.add((r, c, d))

            if (r, c) == end:
                if part2:
                    if cost == min_cost:
                        best_paths.add((r,c))
                    elif cost < min_cost:
                        min_cost = cost
                        best_paths = set([(r,c)])
                else:
                    return cost
                continue
            
            if part2 and cost > min_cost:
                continue

            # Move forward
            nr, nc = r + directions[d][0], c + directions[d][1]
            if is_valid(nr, nc):
                heapq.heappush(q, (cost + 1, nr, nc, d))
                if part2 and cost+1 <= min_cost:
                    best_paths.add((nr, nc))

            # Rotate
            for nd in [(d + 1) % 4, (d - 1 + 4) % 4]:  # Clockwise and counterclockwise
                heapq.heappush(q, (cost + 1000, r, c, nd))
                if part2 and cost + 1000 <= min_cost:
                    best_paths.add((r,c))

        if part2:
            best_paths.add(start)
            return len(best_paths)
        return float('inf')

    result1 = dijkstra(start[0], start[1])
    print(result1)

    result2 = dijkstra(start[0], start[1], part2=True)
    print(result2)

solve()