File size: 7,881 Bytes
a4da721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
928517a
a4da721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
928517a
a4da721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import copy

def load_data(file):
    with open(file) as f:
        raw_data = f.readlines()

    grid = []
    for line in raw_data:
        line = line.strip("\n")
        grid.append(list(line))
    return grid


def build_grid(M, N, coords):
    grid = []
    for i in range(M):
        row = []
        for j in range(N):
            c = "." if (i,j) not in coords else "#"
            row.append(c)
        grid.append(row)
    return grid


def pprint(grid):
    grid_str = "\n".join(["".join(l) for l in grid])
    print(grid_str)


def pprint2(grid):


    M = len(grid)
    N = len(grid[0])
    new_grid = copy.deepcopy(grid)

    for i in range(M):
        for j in range(N):
            if isinstance(grid[i][j], tuple):
                new_grid[i][j] = "O"

    print(new_grid)
    #  try:
    grid_str = "\n".join(["".join(l) for l in new_grid])
    #  except:
    #      import ipdb; ipdb.set_trace();

    print(grid_str)


def get_neighbours(pos, grid):
    directions = [(0,1), (1,0), (-1,0), (0, -1)]

    M = len(grid)
    N = len(grid[0])

    ns = []
    i, j = pos
    for dx, dy in directions:
        ni, nj = (i+dx, j+dy)
        if ni in range(M) and nj in range(N):
            if grid[ni][nj] != "#":
                ns.append((ni, nj))

    return ns


def get_symbol_pos(grid, s):
    M = len(grid)
    N = len(grid[0])

    for i in range(M):
        for j in range(N):
            if grid[i][j] == s:
                return (i,j)



def bfs(grid):

    parents = copy.deepcopy(grid)

    #  start = (0, 0)
    start_pos = get_symbol_pos(grid, "S")
    end_pos = get_symbol_pos(grid, "E")

    q = []
    q.append(start_pos)

    visited = set()

    count = 0
    while len(q) > 0 and end_pos not in visited:

        #  # Visualize grid filling up
        #  # So much fun!
        #  if count % 500 == 0:
        #      print()
        #      pprint2(parents)
        #      print()

        pos = q.pop(0)

        if pos in visited:
            continue

        ns = get_neighbours(pos, grid)
        #  print(ns)
        for n in ns:
            if n not in visited:
                q.append(n)
                ni, nj = n
                parents[ni][nj] = (pos)

        visited.add(pos)
        #  print(len(visited))
        count += 1

    return parents


def get_len_shortest_path(grid):
    #  Run bfs, collect parents info
    parents = bfs(grid)


    # Build back the shortest path
    shortest_grid = copy.deepcopy(grid)
    shortest_path = []
    end_pos = get_symbol_pos(grid, "E")
    start_pos = get_symbol_pos(grid, "S")
    next_ = end_pos
    while next_ != start_pos:

        shortest_path.append(next_)
        i, j = next_
        shortest_grid[i][j] = "O"
        next_ = parents[i][j]

    #  print(len(shortest_path))
    return len(shortest_path), shortest_path



def get_all_shortest_paths(grid, shortest_path):
    # We know that the cheat must be distance 2 and land back on the shortest path
    # Iterate through all points on shortest path, compute 2 in each direction, and see which lands back on shortest
    # path


    directions = [(0, 1), (1,0), (0, -1), (-1, 0)]


    valid_cheat_positions = set()
    all_shortest_paths = []
    shortest_path = shortest_path[::-1]  # Reverse it for easier logic, start_pos is now first
    #  shortest_path = [shortest_path[0]] + shortest_path  # Add the start position so we can consider it too

    start_idx = get_symbol_pos(grid, "S")
    #  print(start_idx)

    # Start idx not included originally
    shortest_path = [start_idx] + shortest_path


    for pos in shortest_path:
        for dx, dy in directions:
            i, j = pos
            cheat_1x, cheat_1y = i+dx, j+dy
            cheat_2x, cheat_2y = i+2*dx, j+2*dy
            cheat_1 = (cheat_1x, cheat_1y)
            cheat_2 = (cheat_2x, cheat_2y)

            if cheat_2 in shortest_path: # Check that we land back on the track
                cheat_2_idx = shortest_path.index(cheat_2)
                pos_idx = shortest_path.index(pos)
                if cheat_2_idx > pos_idx: # Make sure we're ahead, not behind, otherwise doesn't make sense

                    grid_val1 = grid[cheat_1x][cheat_1y]
                    grid_val2 = grid[cheat_2x][cheat_2y]

                    if grid_val1 == "#" or grid_val2 == "#":  # Make sure we're actually using the cheat

                        #  if (cheat_1, cheat_2) and (cheat_2, cheat_1) not in valid_cheat_positions:  # Avoid permutations, i don tthink this is necessary though
                        valid_cheat_positions.add((cheat_1, cheat_2))
                        new_shortest_path = shortest_path[:pos_idx] + [cheat_1, cheat_2] + shortest_path[cheat_2_idx:]

                        all_shortest_paths.append(new_shortest_path[1:]) # Remove the added start pos for consistency



    return all_shortest_paths, valid_cheat_positions

# Load data
# file = "test.txt"
file = "input.txt"
grid = load_data(file)

# First calculate the normal path length
normal_path_len, shortest_path = get_len_shortest_path(grid)

all_shortest_paths, cheat_positions = get_all_shortest_paths(grid, shortest_path)

#  print(len(cheat_positions)) # Should be equal to 43 for test input

# Visualize all cheat positions on grid to see if we did it well
#  for c1, c2 in cheat_positions:
#      grid_copy = copy.deepcopy(grid)
#      i, j = c1
#      grid_copy[i][j] = "1"
#      i, j = c2
#      grid_copy[i][j] = "2"
#      print()
#      pprint2(grid_copy)


counts = {}
for idx, path in enumerate(all_shortest_paths):


    shortest_path_len =  len(path)
    time_saved = normal_path_len - shortest_path_len
    counts[time_saved] = counts.get(time_saved, 0) + 1

total = 0
for time_saved, count in counts.items():
    # print(f"There are {count} cheats that save {time_saved} picoseconds.")

    if time_saved >= 100:
        total += count

print(total)


## Part 2


def get_all_shortest_paths(grid, shortest_path):
    # We know that the cheat must be distance 2 and land back on the shortest path
    # Iterate through all points on shortest path, compute 2 in each direction, and see which lands back on shortest
    # path


    directions = [(0, 1), (1,0), (0, -1), (-1, 0)]


    valid_cheat_positions = set()
    all_shortest_paths = []
    shortest_path = shortest_path[::-1]  # Reverse it for easier logic, start_pos is now first

    start_idx = get_symbol_pos(grid, "S")
    #  print(start_idx)

    # Start idx not included originally
    shortest_path = [start_idx] + shortest_path


    c_len = 2  # Cheat length
    for pos in shortest_path:
        for dx, dy in directions:
            i, j = pos
            cheat_1x, cheat_1y = i+dx, j+dy
            cheat_2x, cheat_2y = i+c_len*dx, j+c_len*dy
            cheat_1 = (cheat_1x, cheat_1y)
            cheat_2 = (cheat_2x, cheat_2y)

            if cheat_2 in shortest_path: # Check that we land back on the track
                cheat_2_idx = shortest_path.index(cheat_2)
                pos_idx = shortest_path.index(pos)
                if cheat_2_idx > pos_idx: # Make sure we're ahead, not behind, otherwise doesn't make sense

                    grid_val1 = grid[cheat_1x][cheat_1y]
                    grid_val2 = grid[cheat_2x][cheat_2y]

                    if grid_val1 == "#" or grid_val2 == "#":  # Make sure we're actually using the cheat

                        #  if (cheat_1, cheat_2) and (cheat_2, cheat_1) not in valid_cheat_positions:  # Avoid permutations, i don tthink this is necessary though
                        valid_cheat_positions.add((cheat_1, cheat_2))
                        new_shortest_path = shortest_path[:pos_idx] + [cheat_1, cheat_2] + shortest_path[cheat_2_idx:]

                        all_shortest_paths.append(new_shortest_path[1:]) # Remove the added start pos for consistency



    return all_shortest_paths, valid_cheat_positions