Spaces:
Running
Running
File size: 7,881 Bytes
a4da721 928517a a4da721 928517a a4da721 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import copy
def load_data(file):
with open(file) as f:
raw_data = f.readlines()
grid = []
for line in raw_data:
line = line.strip("\n")
grid.append(list(line))
return grid
def build_grid(M, N, coords):
grid = []
for i in range(M):
row = []
for j in range(N):
c = "." if (i,j) not in coords else "#"
row.append(c)
grid.append(row)
return grid
def pprint(grid):
grid_str = "\n".join(["".join(l) for l in grid])
print(grid_str)
def pprint2(grid):
M = len(grid)
N = len(grid[0])
new_grid = copy.deepcopy(grid)
for i in range(M):
for j in range(N):
if isinstance(grid[i][j], tuple):
new_grid[i][j] = "O"
print(new_grid)
# try:
grid_str = "\n".join(["".join(l) for l in new_grid])
# except:
# import ipdb; ipdb.set_trace();
print(grid_str)
def get_neighbours(pos, grid):
directions = [(0,1), (1,0), (-1,0), (0, -1)]
M = len(grid)
N = len(grid[0])
ns = []
i, j = pos
for dx, dy in directions:
ni, nj = (i+dx, j+dy)
if ni in range(M) and nj in range(N):
if grid[ni][nj] != "#":
ns.append((ni, nj))
return ns
def get_symbol_pos(grid, s):
M = len(grid)
N = len(grid[0])
for i in range(M):
for j in range(N):
if grid[i][j] == s:
return (i,j)
def bfs(grid):
parents = copy.deepcopy(grid)
# start = (0, 0)
start_pos = get_symbol_pos(grid, "S")
end_pos = get_symbol_pos(grid, "E")
q = []
q.append(start_pos)
visited = set()
count = 0
while len(q) > 0 and end_pos not in visited:
# # Visualize grid filling up
# # So much fun!
# if count % 500 == 0:
# print()
# pprint2(parents)
# print()
pos = q.pop(0)
if pos in visited:
continue
ns = get_neighbours(pos, grid)
# print(ns)
for n in ns:
if n not in visited:
q.append(n)
ni, nj = n
parents[ni][nj] = (pos)
visited.add(pos)
# print(len(visited))
count += 1
return parents
def get_len_shortest_path(grid):
# Run bfs, collect parents info
parents = bfs(grid)
# Build back the shortest path
shortest_grid = copy.deepcopy(grid)
shortest_path = []
end_pos = get_symbol_pos(grid, "E")
start_pos = get_symbol_pos(grid, "S")
next_ = end_pos
while next_ != start_pos:
shortest_path.append(next_)
i, j = next_
shortest_grid[i][j] = "O"
next_ = parents[i][j]
# print(len(shortest_path))
return len(shortest_path), shortest_path
def get_all_shortest_paths(grid, shortest_path):
# We know that the cheat must be distance 2 and land back on the shortest path
# Iterate through all points on shortest path, compute 2 in each direction, and see which lands back on shortest
# path
directions = [(0, 1), (1,0), (0, -1), (-1, 0)]
valid_cheat_positions = set()
all_shortest_paths = []
shortest_path = shortest_path[::-1] # Reverse it for easier logic, start_pos is now first
# shortest_path = [shortest_path[0]] + shortest_path # Add the start position so we can consider it too
start_idx = get_symbol_pos(grid, "S")
# print(start_idx)
# Start idx not included originally
shortest_path = [start_idx] + shortest_path
for pos in shortest_path:
for dx, dy in directions:
i, j = pos
cheat_1x, cheat_1y = i+dx, j+dy
cheat_2x, cheat_2y = i+2*dx, j+2*dy
cheat_1 = (cheat_1x, cheat_1y)
cheat_2 = (cheat_2x, cheat_2y)
if cheat_2 in shortest_path: # Check that we land back on the track
cheat_2_idx = shortest_path.index(cheat_2)
pos_idx = shortest_path.index(pos)
if cheat_2_idx > pos_idx: # Make sure we're ahead, not behind, otherwise doesn't make sense
grid_val1 = grid[cheat_1x][cheat_1y]
grid_val2 = grid[cheat_2x][cheat_2y]
if grid_val1 == "#" or grid_val2 == "#": # Make sure we're actually using the cheat
# if (cheat_1, cheat_2) and (cheat_2, cheat_1) not in valid_cheat_positions: # Avoid permutations, i don tthink this is necessary though
valid_cheat_positions.add((cheat_1, cheat_2))
new_shortest_path = shortest_path[:pos_idx] + [cheat_1, cheat_2] + shortest_path[cheat_2_idx:]
all_shortest_paths.append(new_shortest_path[1:]) # Remove the added start pos for consistency
return all_shortest_paths, valid_cheat_positions
# Load data
# file = "test.txt"
file = "input.txt"
grid = load_data(file)
# First calculate the normal path length
normal_path_len, shortest_path = get_len_shortest_path(grid)
all_shortest_paths, cheat_positions = get_all_shortest_paths(grid, shortest_path)
# print(len(cheat_positions)) # Should be equal to 43 for test input
# Visualize all cheat positions on grid to see if we did it well
# for c1, c2 in cheat_positions:
# grid_copy = copy.deepcopy(grid)
# i, j = c1
# grid_copy[i][j] = "1"
# i, j = c2
# grid_copy[i][j] = "2"
# print()
# pprint2(grid_copy)
counts = {}
for idx, path in enumerate(all_shortest_paths):
shortest_path_len = len(path)
time_saved = normal_path_len - shortest_path_len
counts[time_saved] = counts.get(time_saved, 0) + 1
total = 0
for time_saved, count in counts.items():
# print(f"There are {count} cheats that save {time_saved} picoseconds.")
if time_saved >= 100:
total += count
print(total)
## Part 2
def get_all_shortest_paths(grid, shortest_path):
# We know that the cheat must be distance 2 and land back on the shortest path
# Iterate through all points on shortest path, compute 2 in each direction, and see which lands back on shortest
# path
directions = [(0, 1), (1,0), (0, -1), (-1, 0)]
valid_cheat_positions = set()
all_shortest_paths = []
shortest_path = shortest_path[::-1] # Reverse it for easier logic, start_pos is now first
start_idx = get_symbol_pos(grid, "S")
# print(start_idx)
# Start idx not included originally
shortest_path = [start_idx] + shortest_path
c_len = 2 # Cheat length
for pos in shortest_path:
for dx, dy in directions:
i, j = pos
cheat_1x, cheat_1y = i+dx, j+dy
cheat_2x, cheat_2y = i+c_len*dx, j+c_len*dy
cheat_1 = (cheat_1x, cheat_1y)
cheat_2 = (cheat_2x, cheat_2y)
if cheat_2 in shortest_path: # Check that we land back on the track
cheat_2_idx = shortest_path.index(cheat_2)
pos_idx = shortest_path.index(pos)
if cheat_2_idx > pos_idx: # Make sure we're ahead, not behind, otherwise doesn't make sense
grid_val1 = grid[cheat_1x][cheat_1y]
grid_val2 = grid[cheat_2x][cheat_2y]
if grid_val1 == "#" or grid_val2 == "#": # Make sure we're actually using the cheat
# if (cheat_1, cheat_2) and (cheat_2, cheat_1) not in valid_cheat_positions: # Avoid permutations, i don tthink this is necessary though
valid_cheat_positions.add((cheat_1, cheat_2))
new_shortest_path = shortest_path[:pos_idx] + [cheat_1, cheat_2] + shortest_path[cheat_2_idx:]
all_shortest_paths.append(new_shortest_path[1:]) # Remove the added start pos for consistency
return all_shortest_paths, valid_cheat_positions
|