advent24-llm / day20 /solution_jerpint.py
jerpint's picture
fix bug
928517a
raw
history blame
7.88 kB
import copy
def load_data(file):
with open(file) as f:
raw_data = f.readlines()
grid = []
for line in raw_data:
line = line.strip("\n")
grid.append(list(line))
return grid
def build_grid(M, N, coords):
grid = []
for i in range(M):
row = []
for j in range(N):
c = "." if (i,j) not in coords else "#"
row.append(c)
grid.append(row)
return grid
def pprint(grid):
grid_str = "\n".join(["".join(l) for l in grid])
print(grid_str)
def pprint2(grid):
M = len(grid)
N = len(grid[0])
new_grid = copy.deepcopy(grid)
for i in range(M):
for j in range(N):
if isinstance(grid[i][j], tuple):
new_grid[i][j] = "O"
print(new_grid)
# try:
grid_str = "\n".join(["".join(l) for l in new_grid])
# except:
# import ipdb; ipdb.set_trace();
print(grid_str)
def get_neighbours(pos, grid):
directions = [(0,1), (1,0), (-1,0), (0, -1)]
M = len(grid)
N = len(grid[0])
ns = []
i, j = pos
for dx, dy in directions:
ni, nj = (i+dx, j+dy)
if ni in range(M) and nj in range(N):
if grid[ni][nj] != "#":
ns.append((ni, nj))
return ns
def get_symbol_pos(grid, s):
M = len(grid)
N = len(grid[0])
for i in range(M):
for j in range(N):
if grid[i][j] == s:
return (i,j)
def bfs(grid):
parents = copy.deepcopy(grid)
# start = (0, 0)
start_pos = get_symbol_pos(grid, "S")
end_pos = get_symbol_pos(grid, "E")
q = []
q.append(start_pos)
visited = set()
count = 0
while len(q) > 0 and end_pos not in visited:
# # Visualize grid filling up
# # So much fun!
# if count % 500 == 0:
# print()
# pprint2(parents)
# print()
pos = q.pop(0)
if pos in visited:
continue
ns = get_neighbours(pos, grid)
# print(ns)
for n in ns:
if n not in visited:
q.append(n)
ni, nj = n
parents[ni][nj] = (pos)
visited.add(pos)
# print(len(visited))
count += 1
return parents
def get_len_shortest_path(grid):
# Run bfs, collect parents info
parents = bfs(grid)
# Build back the shortest path
shortest_grid = copy.deepcopy(grid)
shortest_path = []
end_pos = get_symbol_pos(grid, "E")
start_pos = get_symbol_pos(grid, "S")
next_ = end_pos
while next_ != start_pos:
shortest_path.append(next_)
i, j = next_
shortest_grid[i][j] = "O"
next_ = parents[i][j]
# print(len(shortest_path))
return len(shortest_path), shortest_path
def get_all_shortest_paths(grid, shortest_path):
# We know that the cheat must be distance 2 and land back on the shortest path
# Iterate through all points on shortest path, compute 2 in each direction, and see which lands back on shortest
# path
directions = [(0, 1), (1,0), (0, -1), (-1, 0)]
valid_cheat_positions = set()
all_shortest_paths = []
shortest_path = shortest_path[::-1] # Reverse it for easier logic, start_pos is now first
# shortest_path = [shortest_path[0]] + shortest_path # Add the start position so we can consider it too
start_idx = get_symbol_pos(grid, "S")
# print(start_idx)
# Start idx not included originally
shortest_path = [start_idx] + shortest_path
for pos in shortest_path:
for dx, dy in directions:
i, j = pos
cheat_1x, cheat_1y = i+dx, j+dy
cheat_2x, cheat_2y = i+2*dx, j+2*dy
cheat_1 = (cheat_1x, cheat_1y)
cheat_2 = (cheat_2x, cheat_2y)
if cheat_2 in shortest_path: # Check that we land back on the track
cheat_2_idx = shortest_path.index(cheat_2)
pos_idx = shortest_path.index(pos)
if cheat_2_idx > pos_idx: # Make sure we're ahead, not behind, otherwise doesn't make sense
grid_val1 = grid[cheat_1x][cheat_1y]
grid_val2 = grid[cheat_2x][cheat_2y]
if grid_val1 == "#" or grid_val2 == "#": # Make sure we're actually using the cheat
# if (cheat_1, cheat_2) and (cheat_2, cheat_1) not in valid_cheat_positions: # Avoid permutations, i don tthink this is necessary though
valid_cheat_positions.add((cheat_1, cheat_2))
new_shortest_path = shortest_path[:pos_idx] + [cheat_1, cheat_2] + shortest_path[cheat_2_idx:]
all_shortest_paths.append(new_shortest_path[1:]) # Remove the added start pos for consistency
return all_shortest_paths, valid_cheat_positions
# Load data
# file = "test.txt"
file = "input.txt"
grid = load_data(file)
# First calculate the normal path length
normal_path_len, shortest_path = get_len_shortest_path(grid)
all_shortest_paths, cheat_positions = get_all_shortest_paths(grid, shortest_path)
# print(len(cheat_positions)) # Should be equal to 43 for test input
# Visualize all cheat positions on grid to see if we did it well
# for c1, c2 in cheat_positions:
# grid_copy = copy.deepcopy(grid)
# i, j = c1
# grid_copy[i][j] = "1"
# i, j = c2
# grid_copy[i][j] = "2"
# print()
# pprint2(grid_copy)
counts = {}
for idx, path in enumerate(all_shortest_paths):
shortest_path_len = len(path)
time_saved = normal_path_len - shortest_path_len
counts[time_saved] = counts.get(time_saved, 0) + 1
total = 0
for time_saved, count in counts.items():
# print(f"There are {count} cheats that save {time_saved} picoseconds.")
if time_saved >= 100:
total += count
print(total)
## Part 2
def get_all_shortest_paths(grid, shortest_path):
# We know that the cheat must be distance 2 and land back on the shortest path
# Iterate through all points on shortest path, compute 2 in each direction, and see which lands back on shortest
# path
directions = [(0, 1), (1,0), (0, -1), (-1, 0)]
valid_cheat_positions = set()
all_shortest_paths = []
shortest_path = shortest_path[::-1] # Reverse it for easier logic, start_pos is now first
start_idx = get_symbol_pos(grid, "S")
# print(start_idx)
# Start idx not included originally
shortest_path = [start_idx] + shortest_path
c_len = 2 # Cheat length
for pos in shortest_path:
for dx, dy in directions:
i, j = pos
cheat_1x, cheat_1y = i+dx, j+dy
cheat_2x, cheat_2y = i+c_len*dx, j+c_len*dy
cheat_1 = (cheat_1x, cheat_1y)
cheat_2 = (cheat_2x, cheat_2y)
if cheat_2 in shortest_path: # Check that we land back on the track
cheat_2_idx = shortest_path.index(cheat_2)
pos_idx = shortest_path.index(pos)
if cheat_2_idx > pos_idx: # Make sure we're ahead, not behind, otherwise doesn't make sense
grid_val1 = grid[cheat_1x][cheat_1y]
grid_val2 = grid[cheat_2x][cheat_2y]
if grid_val1 == "#" or grid_val2 == "#": # Make sure we're actually using the cheat
# if (cheat_1, cheat_2) and (cheat_2, cheat_1) not in valid_cheat_positions: # Avoid permutations, i don tthink this is necessary though
valid_cheat_positions.add((cheat_1, cheat_2))
new_shortest_path = shortest_path[:pos_idx] + [cheat_1, cheat_2] + shortest_path[cheat_2_idx:]
all_shortest_paths.append(new_shortest_path[1:]) # Remove the added start pos for consistency
return all_shortest_paths, valid_cheat_positions