buster-dev / buster /docparser.py
jerpint's picture
add chatbot (#2)
e112463 unverified
raw
history blame
3.07 kB
import glob
import os
import pickle
import pandas as pd
import tiktoken
from bs4 import BeautifulSoup
from openai.embeddings_utils import cosine_similarity, get_embedding
EMBEDDING_MODEL = "text-embedding-ada-002"
EMBEDDING_ENCODING = "cl100k_base" # this the encoding for text-embedding-ada-002
def get_all_sections(root_dir: str, max_section_length: int = 3000) -> list[str]:
"""Parse all HTML files in `root_dir`, and extract all sections.
Sections are broken into subsections if they are longer than `max_section_length`.
Sections correspond to h2 HTML tags, and move on to h3 then h4 if needed.
"""
files = glob.glob("*.html", root_dir=root_dir)
selector = "section > section"
# Recurse until sections are small enough
def get_all_subsections(soup, selector: str) -> list[str]:
found = soup.select(selector)
data = [x.text.split(";")[-1].strip() for x in found]
sections = []
for i, section in enumerate(data):
if len(section) > max_section_length:
sections.extend(get_all_subsections(found[i], selector + " > section"))
else:
sections.append(section)
return sections
sections = []
for file in files:
filepath = os.path.join(root_dir, file)
with open(filepath, "r") as file:
source = file.read()
soup = BeautifulSoup(source, "html.parser")
sections.extend(get_all_subsections(soup, selector))
return sections
def write_sections(filepath: str, sections: list[str]):
with open(filepath, "wb") as f:
pickle.dump(sections, f)
def read_sections(filepath: str) -> list[str]:
with open(filepath, "rb") as fp:
sections = pickle.load(fp)
return sections
def load_documents(fname: str) -> pd.DataFrame:
df = pd.DataFrame()
with open(fname, "rb") as fp:
documents = pickle.load(fp)
df["documents"] = documents
return df
def compute_n_tokens(df: pd.DataFrame) -> pd.DataFrame:
encoding = tiktoken.get_encoding(EMBEDDING_ENCODING)
df["n_tokens"] = df.documents.apply(lambda x: len(encoding.encode(x)))
return df
def precompute_embeddings(df: pd.DataFrame) -> pd.DataFrame:
df["embedding"] = df.documents.apply(lambda x: get_embedding(x, engine=EMBEDDING_MODEL))
return df
def generate_embeddings(filepath: str, output_csv: str) -> pd.DataFrame:
# Get all documents and precompute their embeddings
df = load_documents(filepath)
df = compute_n_tokens(df)
df = precompute_embeddings(df)
df.to_csv(output_csv)
return df
if __name__ == "__main__":
root_dir = "/home/hadrien/perso/mila-docs/output/"
save_filepath = os.path.join(root_dir, "sections.pkl")
# How to write
sections = get_all_sections(root_dir)
write_sections(save_filepath, sections)
# How to load
sections = read_sections(save_filepath)
# precopmute the document embeddings
df = generate_embeddings(filepath=save_filepath, output_csv="data/document_embeddings.csv")