buster-dev / buster /docparser.py
jerpint's picture
fix bug when reading csv (#19)
c5f5dc3 unverified
raw
history blame
5.81 kB
import glob
import math
import os
import bs4
import numpy as np
import pandas as pd
import tiktoken
from bs4 import BeautifulSoup
from openai.embeddings_utils import get_embedding
EMBEDDING_MODEL = "text-embedding-ada-002"
EMBEDDING_ENCODING = "cl100k_base" # this the encoding for text-embedding-ada-002
BASE_URL_MILA = "https://docs.mila.quebec/"
BASE_URL_ORION = "https://orion.readthedocs.io/en/stable/"
BASE_URL_PYTORCH = "https://pytorch.org/docs/stable/"
PICKLE_EXTENSIONS = [".gz", ".bz2", ".zip", ".xz", ".zst", ".tar", ".tar.gz", ".tar.xz", ".tar.bz2"]
def parse_section(nodes: list[bs4.element.NavigableString]) -> str:
section = []
for node in nodes:
if node.name == "table":
node_text = pd.read_html(node.prettify())[0].to_markdown(index=False, tablefmt="github")
else:
node_text = node.text
section.append(node_text)
section = "".join(section)[1:]
return section
def get_all_documents(
root_dir: str, base_url: str, min_section_length: int = 100, max_section_length: int = 2000
) -> pd.DataFrame:
"""Parse all HTML files in `root_dir`, and extract all sections.
Sections are broken into subsections if they are longer than `max_section_length`.
Sections correspond to `section` HTML tags that have a headerlink attached.
"""
files = glob.glob("**/*.html", root_dir=root_dir, recursive=True)
def get_all_subsections(soup: BeautifulSoup) -> tuple[list[str], list[str], list[str]]:
found = soup.find_all("a", href=True, class_="headerlink")
sections = []
urls = []
names = []
for section_found in found:
section_soup = section_found.parent.parent
section_href = section_soup.find_all("a", href=True, class_="headerlink")
# If sections has subsections, keep only the part before the first subsection
if len(section_href) > 1 and section_soup.section is not None:
section_siblings = list(section_soup.section.previous_siblings)[::-1]
section = parse_section(section_siblings)
else:
section = parse_section(section_soup.children)
# Remove special characters, plus newlines in some url and section names.
section = section.strip()
url = section_found["href"].strip().replace("\n", "")
name = section_found.parent.text.strip()[:-1].replace("\n", "")
# If text is too long, split into chunks of equal sizes
if len(section) > max_section_length:
n_chunks = math.ceil(len(section) / float(max_section_length))
separator_index = math.floor(len(section) / n_chunks)
section_chunks = [section[separator_index * i : separator_index * (i + 1)] for i in range(n_chunks)]
url_chunks = [url] * n_chunks
name_chunks = [name] * n_chunks
sections.extend(section_chunks)
urls.extend(url_chunks)
names.extend(name_chunks)
# If text is not too short, add in 1 chunk
elif len(section) > min_section_length:
sections.append(section)
urls.append(url)
names.append(name)
return sections, urls, names
sections = []
urls = []
names = []
for file in files:
filepath = os.path.join(root_dir, file)
with open(filepath, "r") as f:
source = f.read()
soup = BeautifulSoup(source, "html.parser")
sections_file, urls_file, names_file = get_all_subsections(soup)
sections.extend(sections_file)
urls_file = [base_url + file + url for url in urls_file]
urls.extend(urls_file)
names.extend(names_file)
documents_df = pd.DataFrame.from_dict({"name": names, "url": urls, "text": sections})
return documents_df
def get_file_extension(filepath: str) -> str:
return os.path.splitext(filepath)[1]
def write_documents(filepath: str, documents_df: pd.DataFrame):
ext = get_file_extension(filepath)
if ext == ".csv":
documents_df.to_csv(filepath, index=False)
elif ext in PICKLE_EXTENSIONS:
documents_df.to_pickle(filepath)
else:
raise ValueError(f"Unsupported format: {ext}.")
def read_documents(filepath: str) -> pd.DataFrame:
ext = get_file_extension(filepath)
if ext == ".csv":
df = pd.read_csv(filepath)
df["embedding"] = df.embedding.apply(eval).apply(np.array)
return df
elif ext in PICKLE_EXTENSIONS:
return pd.read_pickle(filepath)
else:
raise ValueError(f"Unsupported format: {ext}.")
def compute_n_tokens(df: pd.DataFrame) -> pd.DataFrame:
encoding = tiktoken.get_encoding(EMBEDDING_ENCODING)
df["n_tokens"] = df.text.apply(lambda x: len(encoding.encode(x)))
return df
def precompute_embeddings(df: pd.DataFrame) -> pd.DataFrame:
df["embedding"] = df.text.apply(lambda x: get_embedding(x, engine=EMBEDDING_MODEL))
return df
def generate_embeddings(filepath: str, output_file: str) -> pd.DataFrame:
# Get all documents and precompute their embeddings
df = read_documents(filepath)
df = compute_n_tokens(df)
df = precompute_embeddings(df)
write_documents(output_file, df)
return df
if __name__ == "__main__":
root_dir = "/home/hadrien/perso/mila-docs/output/"
save_filepath = "data/documents.tar.gz"
# How to write
documents_df = get_all_documents(root_dir)
write_documents(save_filepath, documents_df)
# How to load
documents_df = read_documents(save_filepath)
# precompute the document embeddings
df = generate_embeddings(filepath=save_filepath, output_file="data/document_embeddings.tar.gz")