File size: 28,865 Bytes
970d7ce c54a536 57e4840 0c4f039 dc7cfc8 0c4f039 dc7cfc8 0c4f039 c54a536 0c4f039 9c7cdff 0c4f039 c54a536 a590991 c54a536 0c4f039 c54a536 0c4f039 e2c6728 0c4f039 997bf56 0c4f039 e2c6728 0c4f039 e2c6728 0c4f039 e2c6728 0c4f039 e2c6728 0c4f039 e2c6728 0c4f039 57e4840 c54a536 0c4f039 57e4840 dc7cfc8 57e4840 dc7cfc8 57e4840 dc7cfc8 57e4840 dc7cfc8 57e4840 dc7cfc8 57e4840 dc7cfc8 57e4840 dc7cfc8 57e4840 0c4f039 c54a536 0c4f039 c54a536 57e4840 0c4f039 c54a536 0c4f039 df13cc5 542e87b 0c4f039 542e87b 0c4f039 c54a536 0c4f039 65a4fb1 05109f8 e2c6728 0c4f039 65a4fb1 0c4f039 c54a536 0c4f039 57e4840 65a4fb1 0c4f039 c54a536 65a4fb1 c54a536 0c4f039 c54a536 0c4f039 c0a79f6 0c4f039 65a4fb1 0c4f039 c54a536 0c4f039 c54a536 0c4f039 e2c6728 0c4f039 c0a79f6 0c4f039 e2c6728 0c4f039 c0a79f6 0c4f039 df13cc5 0c4f039 c0a79f6 e2c6728 0c4f039 e2c6728 0c4f039 df13cc5 c54a536 0c4f039 e2c6728 c54a536 65a4fb1 c54a536 0c4f039 c54a536 c0a79f6 c54a536 c0a79f6 e2c6728 0c4f039 c54a536 c0a79f6 0c4f039 c0a79f6 0c4f039 c54a536 0c4f039 c54a536 970d7ce c54a536 0c4f039 c54a536 970d7ce 57e4840 0c4f039 c0a79f6 0c4f039 c0a79f6 0c4f039 65a4fb1 c0a79f6 57e4840 c54a536 c0a79f6 0c4f039 c0a79f6 57e4840 0c4f039 57e4840 970d7ce 57e4840 c0a79f6 57e4840 0c4f039 c54a536 0c4f039 c54a536 970d7ce 0c4f039 c54a536 970d7ce c54a536 0c4f039 e2c6728 0c4f039 e2c6728 65a4fb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 |
import gradio as gr
import uuid
import os
from typing import Optional
import tempfile
from pydub import AudioSegment
import re
import subprocess
import numpy as np
import soundfile as sf
import sounddevice as sd
import time
import sox
from io import BytesIO
import asyncio
import aiohttp
from moviepy.editor import VideoFileClip
import threading
import socketio
import base64
ASR_API = "http://astarwiz.com:9998/asr"
TTS_SPEAK_SERVICE = 'http://astarwiz.com:9603/speak'
TTS_WAVE_SERVICE = 'http://astarwiz.com:9603/wave'
bSegByPunct = True
#bSegByPunct = False
LANGUAGE_MAP = {
"en": "English",
"ma": "Malay",
"ta": "Tamil",
"zh": "Chinese"
}
DEVELOPER_PASSWORD = os.getenv("DEV_PWD")
RAPID_API_KEY = os.getenv("RAPID_API_KEY")
AVAILABLE_SPEAKERS = {
"en": ["MS"],
"ma": ["msFemale"],
"ta": ["ta_female1"],
"zh": ["childChinese2"]
}
audio_update_event = asyncio.Event()
acc_cosy_audio = None
# cosy voice tts related;
#TTS_SOCKET_SERVER = "http://localhost:9444"
TTS_SOCKET_SERVER = "http://astarwiz.com:9444"
sio = socketio.AsyncClient()
@sio.on('connect')
def on_connect():
print('Connected to server')
@sio.on('disconnect')
def on_disconnect():
print('Disconnected from server')
@sio.on('audio_chunk')
async def on_audio_chunk(data):
global translation_update, audio_update, acc_cosy_audio
translated_seg_txt = data['trans_text']
with translation_lock:
translation_update["content"] = translation_update["content"] + " " + translated_seg_txt
translation_update["new"] = True
audio_base64 = data['audio']
audio_bytes = base64.b64decode(audio_base64)
audio_np = np.frombuffer(audio_bytes, dtype=np.int16)
if (acc_cosy_audio is None):
acc_cosy_audio = audio_np
else:
acc_cosy_audio = np.concatenate((acc_cosy_audio, audio_np))
with audio_lock:
audio_update["content"] = (22050, audio_np)
audio_update["new"] = True
#audio_float = audio_np.astype(np.float32) / 32767.0
#audio_queue.append(audio_float)
#accumulated_audio.extend(audio_float)
@sio.on('tts_complete')
async def on_tts_complete():
await sio.disconnect()
print("Disconnected from server after TTS completion")
audio_update_event.set()
# Global variables for storing update information
transcription_update = {"content": "", "new": False}
translation_update = {"content": "", "new": False}
audio_update = {"content": None, "new": False}
# Locks for thread-safe operations
transcription_lock = threading.Lock()
translation_lock = threading.Lock()
audio_lock = threading.Lock()
def replace_audio_in_video(video_path, audio_path, output_path):
command = [
'ffmpeg',
'-i', video_path,
'-i', audio_path,
'-c:v', 'copy',
'-map', '0:v:0',
'-map', '1:a:0',
'-shortest',
output_path
]
subprocess.run(command, check=True)
return output_path
async def replace_audio_and_generate_video(temp_video_path, gradio_audio):
print ("gradio_audio:", gradio_audio)
if not temp_video_path or gradio_audio is None:
return "Both video and audio are required to replace audio.", None
if not os.path.exists(temp_video_path):
return "Video file not found.", None
# Unpack the Gradio audio output
sample_rate, audio_data = gradio_audio
# Ensure audio_data is a numpy array
if not isinstance(audio_data, np.ndarray):
audio_data = np.array(audio_data)
# Create a temporary WAV file for the original audio
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_audio_file:
original_audio_path = temp_audio_file.name
sf.write(original_audio_path, audio_data, sample_rate)
# Get video duration
video_clip = VideoFileClip(temp_video_path)
video_duration = video_clip.duration
video_clip.close()
# Get audio duration
audio_duration = len(audio_data) / sample_rate
# Calculate tempo factor
tempo_factor = audio_duration / video_duration
# Create a temporary WAV file for the tempo-adjusted audio
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_audio_file:
adjusted_audio_path = temp_audio_file.name
# Adjust audio tempo
tfm = sox.Transformer()
tfm.tempo(tempo_factor, 's')
tfm.build(original_audio_path, adjusted_audio_path)
# Generate output video path
output_video_path = os.path.join(tempfile.gettempdir(), f"output_{uuid.uuid4()}.mp4")
try:
replace_audio_in_video(temp_video_path, adjusted_audio_path, output_video_path)
return "Audio replaced successfully.", output_video_path
except subprocess.CalledProcessError as e:
return f"Error replacing audio: {str(e)}", None
finally:
os.unlink(original_audio_path) # Clean up the original audio file
os.unlink(adjusted_audio_path) # Clean up the adjusted audio file
async def fetch_youtube_id(youtube_url: str) -> str:
if 'v=' in youtube_url:
return youtube_url.split("v=")[1].split("&")[0]
elif 'youtu.be/' in youtube_url:
return youtube_url.split("youtu.be/")[1]
elif 'shorts' in youtube_url:
return youtube_url.split("/")[-1]
else:
raise Exception("Unsupported URL format")
async def download_youtube_audio(youtube_url: str, output_dir: Optional[str] = None) -> Optional[tuple[str, str]]:
video_id = await fetch_youtube_id(youtube_url)
if not video_id:
return None
if output_dir is None:
output_dir = tempfile.gettempdir()
output_filename = os.path.join(output_dir, f"{video_id}.mp3")
temp_filename = os.path.join(output_dir, f"{video_id}.mp4")
if os.path.exists(output_filename) and os.path.exists(temp_filename):
return (output_filename, temp_filename)
url = "https://youtube86.p.rapidapi.com/api/youtube/links"
headers = {
'Content-Type': 'application/json',
'x-rapidapi-host': 'youtube86.p.rapidapi.com',
'x-rapidapi-key': RAPID_API_KEY
}
data = {
"url": youtube_url
}
async with aiohttp.ClientSession() as session:
async with session.post(url, headers=headers, json=data) as response:
if response.status == 200:
result = await response.json()
for url in result[0]['urls']:
if url.get('isBundle'):
audio_url = url['url']
extension = url['extension']
async with session.get(audio_url) as audio_response:
if audio_response.status == 200:
content = await audio_response.read()
temp_filename = os.path.join(output_dir, f"{video_id}.{extension}")
with open(temp_filename, 'wb') as audio_file:
audio_file.write(content)
audio = AudioSegment.from_file(temp_filename, format=extension)
audio = audio.set_frame_rate(16000)
audio.export(output_filename, format="mp3", parameters=["-ar", "16000"])
return (output_filename, temp_filename)
else:
print("Error:", response.status, await response.text())
return None
punctuation_marks = r'([\.!?!?。])'
def split_text_with_punctuation(text):
# Split the text using the punctuation marks, keeping the punctuation marks
split_text = re.split(punctuation_marks, text)
# Combine each punctuation mark with the preceding segment
combined_segments = []
# Loop through the split text in steps of 2
for i in range(0, len(split_text) - 1, 2):
combined_segments.append(split_text[i] + split_text[i + 1])
# Handle any remaining text that doesn't have a punctuation following it
if len(split_text) % 2 != 0 and split_text[-1]:
combined_segments.append(split_text[-1])
# Split any segment that exceeds 50 words
final_segments = []
for segment in combined_segments:
words = segment.split() # Split each segment into words
if len(words) > 50:
# Split the segment into chunks of no more than 50 words
for j in range(0, len(words), 50):
final_segments.append(' '.join(words[j:j+50]))
else:
final_segments.append(segment)
return [segment for segment in final_segments if segment] # Filter out empty strings
def extract_segments(text):
pattern = r'\[(\d+\.\d+)s\s*->\s*(\d+\.\d+)s\]\s*(.*?)(?=\[\d+\.\d+s|\Z)'
matches = re.findall(pattern, text, re.DOTALL)
if not matches:
return []
segments = []
for start, end, content in matches:
segments.append({
'start': float(start),
'end': float(end),
'text': content.strip()
})
return segments
def adjust_tempo_pysox_array(gradio_audio, duration):
# Unpack the Gradio audio output
sample_rate, audio_data = gradio_audio
# Ensure audio_data is a numpy array
if not isinstance(audio_data, np.ndarray):
audio_data = np.array(audio_data)
# Calculate the current duration of the audio in seconds
current_duration = len(audio_data) / sample_rate
# Calculate the necessary tempo factor to match the desired duration
tempo_factor = current_duration / duration
# Create a pysox Transformer
tfm = sox.Transformer()
tfm.tempo(tempo_factor)
# Use pysox to transform the audio directly in memory
adjusted_audio = tfm.build_array(input_array=audio_data, sample_rate_in=sample_rate)
# Trim or pad the audio to exactly match the desired duration
target_length = int(sample_rate * duration)
if len(adjusted_audio) > target_length:
adjusted_audio = adjusted_audio[:target_length] # Trim if too long
else:
# Pad with zeros if too short
adjusted_audio = np.pad(adjusted_audio, (0, target_length - len(adjusted_audio)), mode='constant')
# Return the processed audio in the Gradio format (sample_rate, adjusted_audio)
return sample_rate, adjusted_audio
async def inference_via_llm_api(input_text, min_new_tokens=2, max_new_tokens=64):
print(input_text)
one_vllm_input = f"<|im_start|>system\nYou are a translation expert.<|im_end|>\n<|im_start|>user\n{input_text}<|im_end|>\n<|im_start|>assistant"
vllm_api = 'http://astarwiz.com:2333/' + "v1/completions"
data = {
"prompt": one_vllm_input,
'model': "./Edu-4B-NewTok-V2-20240904/",
'min_tokens': min_new_tokens,
'max_tokens': max_new_tokens,
'temperature': 0.1,
'top_p': 0.75,
'repetition_penalty': 1.1,
"stop_token_ids": [151645, ],
}
async with aiohttp.ClientSession() as session:
async with session.post(vllm_api, headers={"Content-Type": "application/json"}, json=data) as response:
if response.status == 200:
result = await response.json()
if "choices" in result:
return result["choices"][0]['text'].strip()
return "The system got some error during vLLM generation. Please try it again."
async def transcribe_and_speak(audio, source_lang, target_lang, youtube_url=None, target_speaker=None, progress_tracker=None):
global transcription_update, translation_update, audio_update, acc_cosy_audio,audio_update_event
transcription_update = {"content": "", "new": True}
translation_update = {"content": "", "new": True}
audio_update = {"content": None, "new": True}
acc_cosy_audio =None
video_path = None
audio_update_event.clear()
#progress = gr.Progress();
#progress(0.1, "started:")
if youtube_url:
audio = await download_youtube_audio(youtube_url)
if audio is None:
return "Failed to download YouTube audio.", None, None, video_path,(22050, accumulated_audio)
audio, video_path = audio
if not audio:
return "Please provide an audio input or a valid YouTube URL.", None, None, video_path,(22050, accumulated_audio)
# ASR
#progress(0.2, "ASR started:")
file_id = str(uuid.uuid4())
data = aiohttp.FormData()
data.add_field('file', open(audio, 'rb'))
data.add_field('language', 'ms' if source_lang == 'ma' else source_lang)
data.add_field('model_name', 'whisper-large-v2-local-cs')
if bSegByPunct:
data.add_field('with_timestamp', 'false')
else:
data.add_field('with_timestamp', 'true')
async with aiohttp.ClientSession() as session:
async with session.post(ASR_API, data=data) as asr_response:
if asr_response.status == 200:
result = await asr_response.json()
transcription = result['text']
with transcription_lock:
transcription_update["content"] = transcription
transcription_update["new"] = True
else:
return "ASR failed", None, None, video_path,(22050, accumulated_audio)
#progress(0.4, "ASR done:")
# use cosy voice if target_lang == 'en' or target_lang == 'zh'
if target_lang == 'en' or target_lang == 'zh':
try:
if not sio.connected:
server_url = TTS_SOCKET_SERVER
await sio.connect(server_url)
print(f"Connected to {server_url}")
# use defualt voice
tts_request = {
'text': transcription,
'overwrite_prompt': False,
'promptText':"",
'promptAudio':"",
'sourceLang':source_lang,
'targetLang':target_lang
}
await sio.emit('tts_request', tts_request)
# wait until all cosy voice tts is done :
await audio_update_event.wait()
print('cosy tts complete,',audio_update)
return transcription, translation_update["content"], audio_update["content"], video_path, (22050, acc_cosy_audio)
except Exception as e:
print(f"Failed to process request: {str(e)}")
print("let use vits then")
if bSegByPunct:
split_result = split_text_with_punctuation(transcription)
else:
split_result = extract_segments(transcription);
translate_segments = []
accumulated_audio = None
sample_rate = 22050
global is_playing
for i, segment in enumerate(split_result):
if bSegByPunct:
translation_prompt = f"Translate the following text from {LANGUAGE_MAP[source_lang]} to {LANGUAGE_MAP[target_lang]}: {segment}"
else:
translation_prompt = f"Translate the following text from {LANGUAGE_MAP[source_lang]} to {LANGUAGE_MAP[target_lang]}: {segment['text']}"
translated_seg_txt = await inference_via_llm_api(translation_prompt)
translate_segments.append(translated_seg_txt)
print(f"Translation: {translated_seg_txt}")
with translation_lock:
translation_update["content"] = " ".join(translate_segments)
translation_update["new"] = True
# Generate TTS for each translated segment
#progress(0.4 + (0.5 * (i + 1) / len(split_result)), "translation and tts in progress :")
tts_params = {
'language': target_lang,
'speed': 1.1,
'speaker': target_speaker or AVAILABLE_SPEAKERS[target_lang][0],
'text': translated_seg_txt
}
async with aiohttp.ClientSession() as session:
async with session.get(TTS_SPEAK_SERVICE, params=tts_params) as tts_response:
if tts_response.status == 200:
audio_file = await tts_response.text()
audio_file = audio_file.strip()
audio_url = f"{TTS_WAVE_SERVICE}?file={audio_file}"
async with session.get(audio_url) as response:
content = await response.read()
audio_chunk, sr = sf.read(BytesIO(content))
#print ('audio_chunk:', type(audio_chunk),audio_chunk)
#print ('audio_chunk:, src:', segment['end'] -segment['start'], ' tts:', len(audio_chunk)/sr)
# _, audio_chunk = adjust_tempo_pysox_array( (sr, audio_chunk), segment['end'] -segment['start'])
if accumulated_audio is None:
accumulated_audio = audio_chunk
sample_rate = sr
else:
accumulated_audio = np.concatenate((accumulated_audio, audio_chunk))
with audio_lock:
audio_update["content"] = (sample_rate, audio_chunk)
audio_update["new"] = True
else:
print(f"TTS failed for segment: {translated_seg_txt}")
translated_text = " ".join(translate_segments)
#progress(1, "all done.")
print("sigal the playing could stop now. all tts generated")
is_playing =False;
if accumulated_audio is not None:
return transcription, translated_text, audio_update["content"], video_path, (sample_rate,accumulated_audio)
else:
return transcription, translated_text, "TTS failed", video_path, (sample_rate, accumulated_audio)
"""
async def run_speech_translation(audio, source_lang, target_lang, youtube_url, target_speaker):
temp_video_path = None
transcription, translated_text, audio_chunksr, temp_video_path = await transcribe_and_speak(audio, source_lang, target_lang, youtube_url, target_speaker)
return transcription, translated_text, audio_chunksr, temp_video_path
"""
async def update_transcription():
global transcription_update
with transcription_lock:
if transcription_update["new"]:
content = transcription_update["content"]
transcription_update["new"] = False
return content
return gr.update()
async def update_translation():
global translation_update
with translation_lock:
if translation_update["new"]:
content = translation_update["content"]
translation_update["new"] = False
return content
return gr.update()
async def update_audio():
global audio_update
with audio_lock:
if audio_update["new"]:
content = audio_update["content"]
audio_update["new"] = False
return content
return gr.update()
def disable_button():
# Disable the button during processing
return gr.update(interactive=False)
with gr.Blocks() as demo:
gr.Markdown("# Speech Translation")
gr.Markdown("Speak into the microphone, upload an audio file, or provide a YouTube URL. The app will translate and speak it back to you.")
with gr.Row():
user_audio_input = gr.Audio(sources=["microphone", "upload"], type="filepath")
user_youtube_url = gr.Textbox(label="YouTube URL (optional)")
with gr.Row():
user_source_lang = gr.Dropdown(choices=["en", "ma", "ta", "zh"], label="Source Language", value="en")
user_target_lang = gr.Dropdown(choices=["en", "ma", "ta", "zh"], label="Target Language", value="zh")
user_target_speaker = gr.Dropdown(choices=AVAILABLE_SPEAKERS['zh'], label="Target Speaker", value="childChinese2")
with gr.Row():
user_button = gr.Button("Translate and Speak", interactive=False)
with gr.Row():
user_transcription_output = gr.Textbox(label="Transcription")
user_translation_output = gr.Textbox(label="Translation")
user_audio_output = gr.Audio(label="Translated Speech", visible =False)
user_audio_final = gr.Audio(label="Final total Speech")
status_message = gr.Textbox(label="Status", interactive=False)
user_video_output = gr.HTML(label="YouTube Video")
replace_audio_button = gr.Button("Replace Audio", interactive=False, visible =False)
final_video_output = gr.Video(label="Video with Replaced Audio",visible=False)
temp_video_path = gr.State()
translation_progress = gr.State(0.0)
async def update_button_state(audio, youtube_url, progress):
print(audio, youtube_url, progress)
# Button is interactive if there's input and progress is 0 or 1 (not in progress)
print ("progress:", audio, youtube_url,bool(audio) , bool(youtube_url), progress == 0 or progress == 1)
return gr.Button(interactive=(bool(audio) or bool(youtube_url)) and (progress == 0 or progress == 1))
user_audio_input.change(
fn=update_button_state,
inputs=[user_audio_input, user_youtube_url, translation_progress],
outputs=user_button
)
user_youtube_url.change(
fn=update_button_state,
inputs=[user_audio_input, user_youtube_url, translation_progress],
outputs=user_button
)
async def run_speech_translation_wrapper(audio, source_lang, target_lang, youtube_url, target_speaker,progress):
progress = 0.1
temp_video_path = None
transcription, translated_text, audio_chunksr, temp_video_path, accumulated_aud_buf = await transcribe_and_speak(audio, source_lang, target_lang, youtube_url, target_speaker)
progress = 1
return transcription, translated_text, audio_chunksr, temp_video_path, "Translation complete", accumulated_aud_buf, gr.update(interactive=True)
user_button.click(
fn=disable_button,
inputs=[],
outputs=[user_button] # Disable the button during processing
).then(
fn=run_speech_translation_wrapper,
inputs=[user_audio_input, user_source_lang, user_target_lang, user_youtube_url, user_target_speaker, translation_progress],
outputs=[user_transcription_output, user_translation_output, user_audio_output, temp_video_path, status_message,user_audio_final,user_button]
)
async def update_replace_audio_button(audio_url, video_path):
print("update replace:", audio_url, video_path)
return gr.Button(interactive=bool(audio_url) and bool(video_path))
user_audio_output.change(
fn=update_replace_audio_button,
inputs=[user_audio_output, temp_video_path],
outputs=[replace_audio_button]
)
replace_audio_button.click(
fn=replace_audio_and_generate_video,
inputs=[temp_video_path, user_audio_final],
outputs=[status_message, final_video_output]
)
async def update_video_embed(youtube_url):
if youtube_url:
try:
video_id = await fetch_youtube_id(youtube_url)
return f'<iframe width="560" height="315" src="https://www.youtube.com/embed/{video_id}" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>'
except Exception as e:
print(f"Error embedding video: {e}")
return ""
user_youtube_url.change(
fn=update_video_embed,
inputs=[user_youtube_url],
outputs=[user_video_output]
)
async def update_target_speakers(target_lang):
return gr.Dropdown(choices=AVAILABLE_SPEAKERS[target_lang], value=AVAILABLE_SPEAKERS[target_lang][0])
user_target_lang.change(
fn=update_target_speakers,
inputs=[user_target_lang],
outputs=[user_target_speaker]
)
async def periodic_update():
transcription = await update_transcription()
translation = await update_translation()
audio = await update_audio()
return (
transcription,
translation,
audio
)
demo.load(
periodic_update,
inputs=[],
outputs=[
user_transcription_output,
user_translation_output,
user_audio_output,
],
every=0.1
)
# JavaScript for client-side queue and playback handling
user_audio_output.change(
None, # No backend change needed, we only handle frontend actions
inputs=user_audio_output, # Set the user_audio_output as input to capture its audio changes
outputs=None,
js="""
async (audioFilePath) => {
// Debug: Log received audio file path
console.log("Received audio file path:", audioFilePath);
if (!window.audioQueue) {
window.audioQueue = [];
window.isPlaying = false;
}
// Ensure the correct URL for the audio file is available
if (audioFilePath && audioFilePath.url) {
console.log("Processing audio file...");
try {
// Fetch and decode the audio file
const response = await fetch(audioFilePath.url);
if (!response.ok) {
console.error("Failed to fetch audio file:", response.statusText);
return;
}
const audioData = await response.arrayBuffer();
const audioContext = new AudioContext();
const decodedData = await audioContext.decodeAudioData(audioData);
// Split the decoded audio buffer into two chunks
const totalDuration = decodedData.duration;
const midPoint = Math.floor(decodedData.length / 2); // Midpoint for splitting
const sampleRate = decodedData.sampleRate;
// Create two separate AudioBuffers for each chunk
const firstHalfBuffer = audioContext.createBuffer(decodedData.numberOfChannels, midPoint, sampleRate);
const secondHalfBuffer = audioContext.createBuffer(decodedData.numberOfChannels, decodedData.length - midPoint, sampleRate);
// Copy data from original buffer to the two new buffers
for (let channel = 0; channel < decodedData.numberOfChannels; channel++) {
firstHalfBuffer.copyToChannel(decodedData.getChannelData(channel).slice(0, midPoint), channel, 0);
secondHalfBuffer.copyToChannel(decodedData.getChannelData(channel).slice(midPoint), channel, 0);
}
// Add both chunks to the queue
window.audioQueue.push(firstHalfBuffer);
window.audioQueue.push(secondHalfBuffer);
console.log("Two audio chunks added to queue. Queue length:", window.audioQueue.length);
// Function to play the next audio chunk from the queue
const playNextChunk = async () => {
console.log("Attempting to play next chunk. isPlaying:", window.isPlaying);
if (!window.isPlaying && window.audioQueue.length > 0) {
console.log("Starting playback...");
window.isPlaying = true;
// Get the next audio buffer from the queue
const audioBuffer = window.audioQueue.shift();
console.log("Playing audio chunk from buffer.");
const source = audioContext.createBufferSource();
source.buffer = audioBuffer;
source.connect(audioContext.destination);
// When the audio finishes playing, play the next chunk
source.onended = () => {
console.log("Audio chunk finished playing.");
window.isPlaying = false;
playNextChunk(); // Play the next audio chunk in the queue
};
source.start(0); // Start playing the current chunk
console.log("Audio chunk started.");
} else {
console.log("Already playing or queue is empty.");
}
};
// Start playing the next chunk if not already playing
playNextChunk();
} catch (error) {
console.error("Error during audio playback:", error);
window.isPlaying = false;
}
} else {
console.log("No valid audio file path received.");
}
}
"""
)
demo.queue()
#demo.launch(auth=(os.getenv("DEV_USER"), os.getenv("DEV_PWD")))
asyncio.run(demo.launch(auth=(os.getenv("DEV_USER"), os.getenv("DEV_PWD"))))
|