File size: 5,812 Bytes
dfa619a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1ea4f6
dfa619a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1ea4f6
 
 
 
 
 
 
 
 
 
dfa619a
b1ea4f6
dfa619a
 
 
 
 
 
 
b1ea4f6
 
dfa619a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1ea4f6
dfa619a
 
 
 
b1ea4f6
 
dfa619a
 
 
 
 
 
 
 
 
 
 
 
 
650bb5d
dfa619a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
### Import Section ###
import os
import re
import chainlit as cl
from langchain.storage import LocalFileStore 
from operator import itemgetter
from langchain_core.runnables import RunnablePassthrough, RunnableLambda, Runnable, RunnableParallel
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from chainlit.types import AskFileResponse
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_openai.embeddings import OpenAIEmbeddings
from qdrant_client import QdrantClient
from qdrant_client.models import VectorParams, Distance
from langchain.embeddings import CacheBackedEmbeddings
from langchain_qdrant import QdrantVectorStore
from langchain.schema import StrOutputParser
from langchain_core.documents import Document
from typing import cast
from dotenv import load_dotenv
import tempfile

### Emvironment Variables ###
load_dotenv('.env')

### Global Section ###
VECTOR_STORE_CACHE = LocalFileStore(root_path = "VECTOR_STORE_CACHE")
E2E_CACHE = LocalFileStore(root_path = "E2E_CACHE")

#πŸ˜‰ helper functions
def clean_text(text: str) -> str:    
    return re.sub(r'[^a-zA-Z0-9]', '', text)

def caching_rag_respnse(question: str, answer:str):    
    E2E_CACHE.mset( [(clean_text(question), answer.encode('utf-8'))]  )

def load_cached_response(input) :
    question = clean_text(input['question']) 
    cached_answer = E2E_CACHE.mget([question])[0]
    return cached_answer.decode('utf-8') if cached_answer else False


#πŸ˜‰ prompt
RAG_SYSTEM_MSG_TEMPLATE = """\
You are a helpful assistant that uses the provided context to answer questions. If Context does not coantain any information to answer Question, just say "I don't know".

Question:
{question}
Context:
{context}
"""
RAG_PROMPT = ChatPromptTemplate([('human', RAG_SYSTEM_MSG_TEMPLATE)])


#πŸ˜‰ retriever
async def get_retriever(file: AskFileResponse):

    with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.pdf') as temp_file:
        temp_file_path = temp_file.name
    with open(temp_file_path, 'wb') as f:
        f.write(file.content)
    documents = PyMuPDFLoader(temp_file_path).load()
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
    chunks = await text_splitter.atransform_documents(documents)


    client = QdrantClient(":memory:")
    core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
    cached_embedder = CacheBackedEmbeddings.from_bytes_store(
        underlying_embeddings = core_embeddings, 
        document_embedding_cache = VECTOR_STORE_CACHE, 
        namespace=core_embeddings.model 
    )

    
    collection_name = f"pdf_to_parse_{clean_text(file.name)}"
    if collection_name not in (x.name for x in client.get_collections().collections):    
        client.create_collection(
            collection_name=collection_name,
            vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
        )    
        vectorstore = QdrantVectorStore(
            client=client,
            collection_name=collection_name,
            embedding=cached_embedder
            )    
        vectorstore.add_documents(chunks)
        already_exist = False
    else:
        vectorstore = QdrantVectorStore(
            client=client,
            collection_name=collection_name,
            embedding=cached_embedder
            )    
        already_exist = True
    retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3})
    return retriever, already_exist


def get_rag(retriever):
    chat_model = ChatOpenAI(model="gpt-4o-mini", streaming=True)
    rag_chain =  RunnableParallel(
        context = retriever,
        question = lambda x: x 
    )| RAG_PROMPT | chat_model | StrOutputParser()
    rag_chain = rag_chain.with_config({'run_name':'RAG'})

    return rag_chain





### On Chat Start (Session Start) Section ###
@cl.on_chat_start
async def on_chat_start():
    """ SESSION SPECIFIC CODE HERE """
    files = None

    # Wait for the user to upload a file
    while files == None:
        files = await cl.AskFileMessage(
            content="Hello!! I'm Jet! Please upload a Pdf File file to begin!",
            accept=["application/pdf"],  
            max_size_mb=10,
            timeout=180,
        ).send()


    file = files[0] 
    msg = cl.Message(content=f"Processing `{file.name}`...", disable_human_feedback=True)
    await msg.send()

    
    # get rag chain
    retriever, already_exist = await get_retriever(file)
    # retriever, already_exist = await get_retriever(file.name.split('pdf')[0], chunks)
    rag_chain = get_rag(retriever)

    # Let the user know that the system is ready
    if not already_exist:
        msg.content = f"Processing `{file.name}` done. You can now ask questions!"
    else:
        msg.content = f"VectorStore already exist. You can now ask questions!" 
    await msg.update()

    cl.user_session.set("chain", rag_chain)




### Rename Chains ###
@cl.author_rename
def rename(orig_author: str):
    """ RENAME CODE HERE """
    rename_dict = {"Assistant": "Jet"}
    return rename_dict.get(orig_author, orig_author)


### On Message Section ###
@cl.on_message
async def main(message):
    """
    MESSAGE CODE HERE
    """

    cached_answer = load_cached_response({'question':message.content})
    if cached_answer:
        msg = cl.Message(content=cached_answer)
        await msg.send()
    else:
        chain = cast(Runnable, cl.user_session.get("chain")) 

        msg = cl.Message(content="")
        async for stream_resp in chain.astream(message.content):
            await msg.stream_token(stream_resp)

        caching_rag_respnse(question=message.content, answer=msg.content)

        await msg.send()