Spaces:
Build error
Build error
File size: 5,812 Bytes
dfa619a b1ea4f6 dfa619a b1ea4f6 dfa619a b1ea4f6 dfa619a b1ea4f6 dfa619a b1ea4f6 dfa619a b1ea4f6 dfa619a 650bb5d dfa619a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
### Import Section ###
import os
import re
import chainlit as cl
from langchain.storage import LocalFileStore
from operator import itemgetter
from langchain_core.runnables import RunnablePassthrough, RunnableLambda, Runnable, RunnableParallel
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from chainlit.types import AskFileResponse
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_openai.embeddings import OpenAIEmbeddings
from qdrant_client import QdrantClient
from qdrant_client.models import VectorParams, Distance
from langchain.embeddings import CacheBackedEmbeddings
from langchain_qdrant import QdrantVectorStore
from langchain.schema import StrOutputParser
from langchain_core.documents import Document
from typing import cast
from dotenv import load_dotenv
import tempfile
### Emvironment Variables ###
load_dotenv('.env')
### Global Section ###
VECTOR_STORE_CACHE = LocalFileStore(root_path = "VECTOR_STORE_CACHE")
E2E_CACHE = LocalFileStore(root_path = "E2E_CACHE")
#π helper functions
def clean_text(text: str) -> str:
return re.sub(r'[^a-zA-Z0-9]', '', text)
def caching_rag_respnse(question: str, answer:str):
E2E_CACHE.mset( [(clean_text(question), answer.encode('utf-8'))] )
def load_cached_response(input) :
question = clean_text(input['question'])
cached_answer = E2E_CACHE.mget([question])[0]
return cached_answer.decode('utf-8') if cached_answer else False
#π prompt
RAG_SYSTEM_MSG_TEMPLATE = """\
You are a helpful assistant that uses the provided context to answer questions. If Context does not coantain any information to answer Question, just say "I don't know".
Question:
{question}
Context:
{context}
"""
RAG_PROMPT = ChatPromptTemplate([('human', RAG_SYSTEM_MSG_TEMPLATE)])
#π retriever
async def get_retriever(file: AskFileResponse):
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.pdf') as temp_file:
temp_file_path = temp_file.name
with open(temp_file_path, 'wb') as f:
f.write(file.content)
documents = PyMuPDFLoader(temp_file_path).load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
chunks = await text_splitter.atransform_documents(documents)
client = QdrantClient(":memory:")
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
cached_embedder = CacheBackedEmbeddings.from_bytes_store(
underlying_embeddings = core_embeddings,
document_embedding_cache = VECTOR_STORE_CACHE,
namespace=core_embeddings.model
)
collection_name = f"pdf_to_parse_{clean_text(file.name)}"
if collection_name not in (x.name for x in client.get_collections().collections):
client.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
)
vectorstore = QdrantVectorStore(
client=client,
collection_name=collection_name,
embedding=cached_embedder
)
vectorstore.add_documents(chunks)
already_exist = False
else:
vectorstore = QdrantVectorStore(
client=client,
collection_name=collection_name,
embedding=cached_embedder
)
already_exist = True
retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3})
return retriever, already_exist
def get_rag(retriever):
chat_model = ChatOpenAI(model="gpt-4o-mini", streaming=True)
rag_chain = RunnableParallel(
context = retriever,
question = lambda x: x
)| RAG_PROMPT | chat_model | StrOutputParser()
rag_chain = rag_chain.with_config({'run_name':'RAG'})
return rag_chain
### On Chat Start (Session Start) Section ###
@cl.on_chat_start
async def on_chat_start():
""" SESSION SPECIFIC CODE HERE """
files = None
# Wait for the user to upload a file
while files == None:
files = await cl.AskFileMessage(
content="Hello!! I'm Jet! Please upload a Pdf File file to begin!",
accept=["application/pdf"],
max_size_mb=10,
timeout=180,
).send()
file = files[0]
msg = cl.Message(content=f"Processing `{file.name}`...", disable_human_feedback=True)
await msg.send()
# get rag chain
retriever, already_exist = await get_retriever(file)
# retriever, already_exist = await get_retriever(file.name.split('pdf')[0], chunks)
rag_chain = get_rag(retriever)
# Let the user know that the system is ready
if not already_exist:
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
else:
msg.content = f"VectorStore already exist. You can now ask questions!"
await msg.update()
cl.user_session.set("chain", rag_chain)
### Rename Chains ###
@cl.author_rename
def rename(orig_author: str):
""" RENAME CODE HERE """
rename_dict = {"Assistant": "Jet"}
return rename_dict.get(orig_author, orig_author)
### On Message Section ###
@cl.on_message
async def main(message):
"""
MESSAGE CODE HERE
"""
cached_answer = load_cached_response({'question':message.content})
if cached_answer:
msg = cl.Message(content=cached_answer)
await msg.send()
else:
chain = cast(Runnable, cl.user_session.get("chain"))
msg = cl.Message(content="")
async for stream_resp in chain.astream(message.content):
await msg.stream_token(stream_resp)
caching_rag_respnse(question=message.content, answer=msg.content)
await msg.send()
|