Spaces:
Build error
Build error
File size: 12,157 Bytes
1007af5 ff8ef68 babbbfa 1007af5 edeaf12 1007af5 babbbfa 1007af5 babbbfa 1007af5 babbbfa 1007af5 ff8ef68 1007af5 babbbfa 1007af5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import base64
import json
import os
import re
import time
import uuid
from io import BytesIO
from pathlib import Path
import numpy as np
import pandas as pd
import streamlit as st
from PIL import Image
from streamlit_drawable_canvas import st_canvas
from svgpathtools import parse_path
def main():
if "button_id" not in st.session_state:
st.session_state["button_id"] = ""
if "color_to_label" not in st.session_state:
st.session_state["color_to_label"] = {}
PAGES = {
"About": about,
"Basic example": full_app,
"Get center coords of circles": center_circle_app,
"Color-based image annotation": color_annotation_app,
"Download Base64 encoded PNG": png_export,
"Compute the length of drawn arcs": compute_arc_length,
}
page = st.sidebar.selectbox("Page:", options=list(PAGES.keys()))
PAGES[page]()
with st.sidebar:
st.markdown("---")
st.markdown(
'<h6>Made in  <img src="https://streamlit.io/images/brand/streamlit-mark-color.png" alt="Streamlit logo" height="16">  by <a href="https://twitter.com/andfanilo">@andfanilo</a></h6>',
unsafe_allow_html=True,
)
st.markdown(
'<div style="margin: 0.75em 0;"><a href="https://www.buymeacoffee.com/andfanilo" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/default-orange.png" alt="Buy Me A Coffee" height="41" width="174"></a></div>',
unsafe_allow_html=True,
)
def about():
st.markdown(
"""
Welcome to the demo of [Streamlit Drawable Canvas](https://github.com/andfanilo/streamlit-drawable-canvas).
On this site, you will find a full use case for this Streamlit component, and answers to some frequently asked questions.
:pencil: [Demo source code](https://github.com/andfanilo/streamlit-drawable-canvas-demo/)
"""
)
st.image("img/demo.gif")
st.markdown(
"""
What you can do with Drawable Canvas:
* Draw freely, lines, circles and boxes on the canvas, with options on stroke & fill
* Rotate, skew, scale, move any object of the canvas on demand
* Select a background color or image to draw on
* Get image data and every drawn object properties back to Streamlit !
* Choose to fetch back data in realtime or on demand with a button
* Undo, Redo or Drop canvas
* Save canvas data as JSON to reuse for another session
"""
)
def full_app():
st.sidebar.header("Configuration")
st.markdown(
"""
Draw on the canvas, get the drawings back to Streamlit!
* Configure canvas in the sidebar
* In transform mode, double-click an object to remove it
* In polygon mode, left-click to add a point, right-click to close the polygon, double-click to remove the latest point
"""
)
with st.echo("below"):
# Specify canvas parameters in application
drawing_mode = st.sidebar.selectbox(
"Drawing tool:",
("freedraw", "line", "rect", "circle", "transform", "polygon", "point"),
)
stroke_width = st.sidebar.slider("Stroke width: ", 1, 25, 3)
if drawing_mode == "point":
point_display_radius = st.sidebar.slider("Point display radius: ", 1, 25, 3)
stroke_color = st.sidebar.color_picker("Stroke color hex: ")
bg_color = st.sidebar.color_picker("Background color hex: ", "#eee")
bg_image = st.sidebar.file_uploader("Background image:", type=["png", "jpg"])
realtime_update = st.sidebar.checkbox("Update in realtime", True)
# Create a canvas component
canvas_result = st_canvas(
fill_color="rgba(255, 165, 0, 0.3)", # Fixed fill color with some opacity
stroke_width=stroke_width,
stroke_color=stroke_color,
background_color=bg_color,
background_image=Image.open(bg_image) if bg_image else None,
update_streamlit=realtime_update,
height=150,
drawing_mode=drawing_mode,
point_display_radius=point_display_radius if drawing_mode == "point" else 0,
display_toolbar=st.sidebar.checkbox("Display toolbar", True),
key="full_app",
)
# Do something interesting with the image data and paths
if canvas_result.image_data is not None:
st.image(canvas_result.image_data)
if canvas_result.json_data is not None:
objects = pd.json_normalize(canvas_result.json_data["objects"])
for col in objects.select_dtypes(include=["object"]).columns:
objects[col] = objects[col].astype("str")
st.dataframe(objects)
def center_circle_app():
st.markdown(
"""
Computation of center coordinates for circle drawings some understanding of Fabric.js coordinate system
and play with some trigonometry.
Coordinates are canvas-related to top-left of image, increasing x going down and y going right.
```
center_x = left + radius * cos(angle * pi / 180)
center_y = top + radius * sin(angle * pi / 180)
```
"""
)
bg_image = Image.open("img/tennis-balls.jpg")
with open("saved_state.json", "r") as f:
saved_state = json.load(f)
canvas_result = st_canvas(
fill_color="rgba(255, 165, 0, 0.2)", # Fixed fill color with some opacity
stroke_width=5,
stroke_color="black",
background_image=bg_image,
initial_drawing=saved_state
if st.sidebar.checkbox("Initialize with saved state", False)
else None,
height=400,
width=600,
drawing_mode="circle",
key="center_circle_app",
)
with st.echo("below"):
if canvas_result.json_data is not None:
df = pd.json_normalize(canvas_result.json_data["objects"])
if len(df) == 0:
return
df["center_x"] = df["left"] + df["radius"] * np.cos(
df["angle"] * np.pi / 180
)
df["center_y"] = df["top"] + df["radius"] * np.sin(
df["angle"] * np.pi / 180
)
st.subheader("List of circle drawings")
for _, row in df.iterrows():
st.markdown(
f'Center coords: ({row["center_x"]:.2f}, {row["center_y"]:.2f}). Radius: {row["radius"]:.2f}'
)
def color_annotation_app():
st.markdown(
"""
Drawable Canvas doesn't provided out-of-the-box image annotation capabilities, but we can hack something with session state,
by mapping a drawing fill color to a label.
Annotate pedestrians, cars and traffic lights with this one, with any color/label you want
(though in a real app you should rather provide your own label and fills :smile:).
If you really want advanced image annotation capabilities, you'd better check [Streamlit Label Studio](https://discuss.streamlit.io/t/new-component-streamlit-labelstudio-allows-you-to-embed-the-label-studio-annotation-frontend-into-your-application/9524)
"""
)
with st.echo("below"):
bg_image = Image.open("img/annotation.jpeg")
label_color = (
st.sidebar.color_picker("Annotation color: ", "#EA1010") + "77"
) # for alpha from 00 to FF
label = st.sidebar.text_input("Label", "Default")
mode = "transform" if st.sidebar.checkbox("Move ROIs", False) else "rect"
canvas_result = st_canvas(
fill_color=label_color,
stroke_width=3,
background_image=bg_image,
height=320,
width=512,
drawing_mode=mode,
key="color_annotation_app",
)
if canvas_result.json_data is not None:
df = pd.json_normalize(canvas_result.json_data["objects"])
if len(df) == 0:
return
st.session_state["color_to_label"][label_color] = label
df["label"] = df["fill"].map(st.session_state["color_to_label"])
st.dataframe(df[["top", "left", "width", "height", "fill", "label"]])
with st.expander("Color to label mapping"):
st.json(st.session_state["color_to_label"])
def png_export():
st.markdown(
"""
Realtime update is disabled for this demo.
Press the 'Download' button at the bottom of canvas to update exported image.
"""
)
try:
Path("tmp/").mkdir()
except FileExistsError:
pass
# Regular deletion of tmp files
# Hopefully callback makes this better
now = time.time()
N_HOURS_BEFORE_DELETION = 1
for f in Path("tmp/").glob("*.png"):
st.write(f, os.stat(f).st_mtime, now)
if os.stat(f).st_mtime < now - N_HOURS_BEFORE_DELETION * 3600:
Path.unlink(f)
if st.session_state["button_id"] == "":
st.session_state["button_id"] = re.sub(
"\d+", "", str(uuid.uuid4()).replace("-", "")
)
button_id = st.session_state["button_id"]
file_path = f"tmp/{button_id}.png"
custom_css = f"""
<style>
#{button_id} {{
display: inline-flex;
align-items: center;
justify-content: center;
background-color: rgb(255, 255, 255);
color: rgb(38, 39, 48);
padding: .25rem .75rem;
position: relative;
text-decoration: none;
border-radius: 4px;
border-width: 1px;
border-style: solid;
border-color: rgb(230, 234, 241);
border-image: initial;
}}
#{button_id}:hover {{
border-color: rgb(246, 51, 102);
color: rgb(246, 51, 102);
}}
#{button_id}:active {{
box-shadow: none;
background-color: rgb(246, 51, 102);
color: white;
}}
</style> """
data = st_canvas(update_streamlit=False, key="png_export")
if data is not None and data.image_data is not None:
img_data = data.image_data
im = Image.fromarray(img_data.astype("uint8"), mode="RGBA")
im.save(file_path, "PNG")
buffered = BytesIO()
im.save(buffered, format="PNG")
img_data = buffered.getvalue()
try:
# some strings <-> bytes conversions necessary here
b64 = base64.b64encode(img_data.encode()).decode()
except AttributeError:
b64 = base64.b64encode(img_data).decode()
dl_link = (
custom_css
+ f'<a download="{file_path}" id="{button_id}" href="data:file/txt;base64,{b64}">Export PNG</a><br></br>'
)
st.markdown(dl_link, unsafe_allow_html=True)
def compute_arc_length():
st.markdown(
"""
Using an external SVG manipulation library like [svgpathtools](https://github.com/mathandy/svgpathtools)
You can do some interesting things on drawn paths.
In this example we compute the length of any drawn path.
"""
)
with st.echo("below"):
bg_image = Image.open("img/annotation.jpeg")
canvas_result = st_canvas(
stroke_color="yellow",
stroke_width=3,
background_image=bg_image,
height=320,
width=512,
drawing_mode="freedraw",
key="compute_arc_length",
)
if (
canvas_result.json_data is not None
and len(canvas_result.json_data["objects"]) != 0
):
df = pd.json_normalize(canvas_result.json_data["objects"])
paths = df["path"].tolist()
for ind, path in enumerate(paths):
path = parse_path(" ".join([str(e) for line in path for e in line]))
st.write(f"Path {ind} has length {path.length():.3f} pixels")
if __name__ == "__main__":
st.set_page_config(
page_title="Streamlit Drawable Canvas Demo", page_icon=":pencil2:"
)
st.title("Drawable Canvas Demo")
st.sidebar.subheader("Configuration")
main() |