jeysshon commited on
Commit
d25c5db
·
verified ·
1 Parent(s): 13ed002

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -5
app.py CHANGED
@@ -1,10 +1,24 @@
1
  import gradio as gr
2
  import tensorflow as tf
 
3
 
4
- path_to_model = "./modelo_jeysshon_iaderm.h5"
 
 
 
5
 
6
- # Cargar el modelo directamente
7
- model = tf.keras.models.load_model(path_to_model)
 
 
 
 
 
 
 
 
 
 
8
 
9
  labels = [
10
  'Acné / Rosácea', 'Queratosis Actínica / Carcinoma Basocelular',
@@ -25,7 +39,7 @@ def classify_image(image):
25
  image = tf.image.resize(image, (224, 224))
26
  image = tf.expand_dims(image, axis=0)
27
  prediction = model.predict(image).flatten()
28
- confidences = {labels[i]: float(prediction[i]) for i in range(23)}
29
  return confidences
30
 
31
  title = "AI-DERM DETECTION"
@@ -39,7 +53,7 @@ article = (
39
  "5. Celulitis / Impétigo (Infecciones Bacterianas)\n"
40
  "6. Eccema\n"
41
  "7. Exantemas (Erupciones Cutáneas por Medicamentos)\n"
42
- "8. (areata)\n"
43
  "9. Herpes / VPH\n"
44
  "10. Trastornos de la Pigmentación\n"
45
  "11. Lupus\n"
@@ -87,3 +101,4 @@ gr.Interface(
87
  outputs=gr.outputs.Label(num_top_classes=4),
88
  examples=examples
89
  ).launch()
 
 
1
  import gradio as gr
2
  import tensorflow as tf
3
+ from tensorflow.keras.layers import DepthwiseConv2D
4
 
5
+ # Función personalizada para DepthwiseConv2D
6
+ def custom_depthwise_conv2d(**kwargs):
7
+ kwargs.pop('groups', None) # Eliminar el argumento 'groups'
8
+ return DepthwiseConv2D(**kwargs)
9
 
10
+ custom_objects = {'DepthwiseConv2D': custom_depthwise_conv2d}
11
+
12
+ # Ruta del modelo
13
+ path_to_model = "modelo_jeysshon_iaderm.h5"
14
+
15
+ # Cargar el modelo con custom_objects
16
+ try:
17
+ model = tf.keras.models.load_model(path_to_model, custom_objects=custom_objects)
18
+ print("Modelo cargado exitosamente.")
19
+ except Exception as e:
20
+ print(f"Error al cargar el modelo: {e}")
21
+ raise
22
 
23
  labels = [
24
  'Acné / Rosácea', 'Queratosis Actínica / Carcinoma Basocelular',
 
39
  image = tf.image.resize(image, (224, 224))
40
  image = tf.expand_dims(image, axis=0)
41
  prediction = model.predict(image).flatten()
42
+ confidences = {labels[i]: float(prediction[i]) for i in range(len(labels))}
43
  return confidences
44
 
45
  title = "AI-DERM DETECTION"
 
53
  "5. Celulitis / Impétigo (Infecciones Bacterianas)\n"
54
  "6. Eccema\n"
55
  "7. Exantemas (Erupciones Cutáneas por Medicamentos)\n"
56
+ "8. Pérdida de Cabello (Alopecia)\n"
57
  "9. Herpes / VPH\n"
58
  "10. Trastornos de la Pigmentación\n"
59
  "11. Lupus\n"
 
101
  outputs=gr.outputs.Label(num_top_classes=4),
102
  examples=examples
103
  ).launch()
104
+