Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import tensorflow | |
from tensorflow.keras.models import load_model | |
from tensorflow.keras.preprocessing import image | |
MODEL_ISATRON_JEY = 'modelo_isatron_jeysshonl.h5' | |
cnn_model = load_model(MODEL_ISATRON_JEY) | |
def make_prediction(test_image): | |
test_image = test_image.name | |
test_image = image.load_img(test_image, target_size=(224, 224)) | |
test_image = image.img_to_array(test_image) / 255. | |
test_image = np.expand_dims(test_image, axis=0) | |
result = cnn_model.predict(test_image) | |
return {"Normal": str(result[0][0]), "Neumonia": str(result[0][1])} | |
image_input = gr.inputs.Image(type="file") | |
description = " El modelo IsaTron es una Red Neuronal Convolucional (CNN) que ayuda al personal médico a predecir si una radiografía pediátrica muestra alguna anomalía"\ | |
" , el paciente pediátrico puede tener neumonía o no y para verificar la predicción del modelo IsaTron se crea un porcentaje." \ | |
" Para el funcionamiento del algoritmo se agregaron algunas imágenes de ejemplos que he proporcionado." | |
enable_queue = True | |
examples = [ | |
['1normal.jpeg'], | |
['neumo1.jpeg'], | |
['image1_pneumonia_virus.jpeg'], | |
['image1_pneumonia_bacteria.jpeg'], | |
['image2_normal.jpeg'], | |
['image2_pneumonia_bacteria.jpeg'], | |
['image3_normal.jpeg'], | |
['image4_normal.jpeg'], | |
] | |
texto_jey = "<p style='text-align: center'><span style='font-size: 15pt;'>IsaTron . Jeysshon Bustos . 2022. </span></p>" | |
interface=gr.Interface(fn=make_prediction, | |
inputs=image_input, | |
outputs='label', | |
title="Neumonia Detección IsaTron", | |
##interpretation = "default", | |
description=description, | |
theme="dark-huggingface", | |
texto_jey=texto_jey, | |
examples=examples, | |
enable_queue=enable_queue | |
) | |
interface.launch(share=True,debug=True) | |