Spaces:
Runtime error
Runtime error
File size: 21,671 Bytes
1013b6b 661f0c9 dbbd8c8 c566ad4 229c0c3 661f0c9 1013b6b d8058ab 59e9d2e 1013b6b f670c93 1013b6b dbbd8c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
# %% [markdown]
# <a href="https://colab.research.google.com/github/starship006/ARENA-work/blob/main/w1/w1d4.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
# %% [markdown]
# # Training Shakespeare Himself
# %% [markdown]
# For those who are not part of the ARENA program and are curious as to what this is, this was my first significant AI/ML project! I made components for a decoder-only transformer, and trained it on a corpus consisting of text from Shakespeare. Scroll to the bottom to see some output :)
# %%
import torch as t
import numpy as np
from torch import nn
import fancy_einsum as einsum
import einops
import pandas as pd
# %% [markdown]
# ## transformer functions
#
#
# %% [markdown]
# This will be from the transformer components I made earlier this week, but I'll put down optimizations so it can use the GPU.
#
# And I did just that. The speed improvements are MASSIVE, wow!
# %%
device = t.device("cuda:0" if t.cuda.is_available() else "cpu")
t.cuda.is_available()
# %%
def multihead_masked_attention(Q: t.Tensor, K: t.Tensor, V: t.Tensor, num_heads: int):
'''
Implements multihead masked attention on the matrices Q, K and V.
Q: shape (batch, seq_len, nheads*headsize)
K: shape (batch, seq_len, nheads*headsize)
V: shape (batch, seq_len, nheads*headsize)
'''
Q = einops.rearrange(Q, 'b s (n h) -> b n s h', n = num_heads)
K = einops.rearrange(K, 'b s (n h) -> b n s h', n = num_heads)
V = einops.rearrange(V, 'b s (n h) -> b n s h', n = num_heads)
scores = einsum.einsum('b n k h, b n s h -> b n s k', K, Q)
assert scores.shape == t.Size([Q.shape[0], num_heads,Q.shape[2], K.shape[2]])
scores = scores / np.sqrt(Q.shape[-1])
attention = scores + t.triu(t.ones_like(scores,device = device) * float("-inf"), diagonal=1) # THIS IS STOLEN FROM JAY - testing it out
softed = t.softmax(attention,dim=-1)
result = einsum.einsum('batch numheads seqQ seqK, batch numheads seqK headsize -> batch numheads seqQ headsize',softed, V)
return einops.rearrange(result, 'batch numheads seqQ headsize -> batch seqQ (numheads headsize)')
# %%
class MultiheadMaskedAttention(nn.Module):
W_QKV: nn.Linear
W_O: nn.Linear
def __init__(self, hidden_size: int, num_heads: int):
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_size = hidden_size // num_heads
self.WQKV = t.nn.Linear(self.hidden_size, 3 * hidden_size) # TODO: why do we use a linear layer here? aren't they matricies?
self.W0 = t.nn.Linear(self.hidden_size, self.hidden_size)
def forward(self, x: t.Tensor) -> t.Tensor:
'''
x: shape (batch, seq, hidden_size)
Return: shape (batch, seq, hidden_size)
'''
#print("YO?")
x = x.float() # seems like it needs to be a float!
QKV = self.WQKV(x)
Q = QKV[:,:,:self.hidden_size]
K = QKV[:,:,self.hidden_size:self.hidden_size * 2]
V = QKV[:,:,self.hidden_size * 2:]
assert Q.shape == K.shape == V.shape == x.shape
return self.W0(multihead_masked_attention(Q,K,V,self.num_heads))
# %%
from dataclasses import dataclass
@dataclass(frozen=True)
class TransformerConfig:
'''Constants used throughout your decoder-only transformer model.'''
num_layers: int
num_heads: int
vocab_size: int
hidden_size: int
max_seq_len: int
dropout: float = 0.1
layer_norm_epsilon: float = 1e-05
# %%
# from yesterday
class PositionalEncoding(nn.Module):
def __init__(self, embedding_dim: int, max_seq_len: int = 5000):
super().__init__()
self.dim = embedding_dim
self.length = max_seq_len
# mostly copied. i understand this, just need to work on
# making more tensors and getting more exposure to methods of making tensors
def P (delta):
n = 10000 # hardcoded
d = embedding_dim
l = max_seq_len
sin_array = np.sin(delta / n ** (2 * np.arange(d//2) / d))
cos_array = np.cos(delta / n ** (2 * np.arange(d//2) / d))
array = np.zeros(d)
array[::2] = sin_array
array[1::2] = cos_array
return array
tokenArray = []
for i in range(max_seq_len):
tokenArray.append(P(i)) # changed from previous design
self.multMax = t.tensor(np.array(tokenArray), dtype=t.float, device = device)
def forward(self, x: t.Tensor) -> t.Tensor:
'''
x: shape (batch, seq_len, embedding_dim)
'''
return x + self.multMax[:x.shape[1]]
# %%
class MLP(nn.Module):
def __init__(self, config: TransformerConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.layers = nn.Sequential(
nn.Linear(self.hidden_size, self.hidden_size * 4),
nn.GELU(),
nn.Linear(self.hidden_size * 4, self.hidden_size),
nn.Dropout(config.dropout)
)
def forward(self, x: t.Tensor):
x = x.float() # seems like it needs to be a float!
return self.layers(x).float() # ima do the same thing again!
# %%
class DecoderBlock(nn.Module):
def __init__(self, config: TransformerConfig):
super().__init__()
self.attentionBlock = nn.Sequential(
MultiheadMaskedAttention(config.hidden_size, config.num_heads),
nn.LayerNorm(config.hidden_size)
)
self.MLP = nn.Sequential(
MLP(config),
nn.LayerNorm(config.hidden_size)
)
def forward(self, x: t.Tensor) -> t.Tensor:
partOne = x + self.attentionBlock(x)
return (partOne + self.MLP(partOne)).float() # seems like it needs to be a float!
# %%
class DecoderOnlyTransformer(nn.Module):
def __init__(self, config: TransformerConfig):
super().__init__()
self.tokenize = nn.Embedding(config.vocab_size, config.hidden_size).to(device)
self.positionize = PositionalEncoding(config.hidden_size,config.max_seq_len)
self.restModel = nn.Sequential(
nn.Dropout(config.dropout),
*[DecoderBlock(config) for i in range(config.num_layers)],
nn.LayerNorm(config.hidden_size),
)
self.unembed = self.tokenize.weight.T.to(device)
def forward(self, x: t.Tensor) -> t.Tensor:
x = self.tokenize(x)
x = self.positionize(x)
toUnembed = self.restModel(x).to(device)
return [email protected]
# %% [markdown]
# ## Data Prep
# %% [markdown]
# Make the dataset to parse through all of the words
# %%
import re
from torch.utils.data import Dataset, DataLoader
from torchvision import datasets
class CustomTextDataset(Dataset):
def __init__(self, words, seq_len, fractionOfWords):
self.fractionOfWords = fractionOfWords
self.words = words
self.setOfWords = set(words)
self.seq_len = seq_len
self.max_len = len(self.words) - (self.seq_len + 1)
self.vocab_size = len(self.setOfWords)
self.word_to_token = {word: idx for (idx, word) in enumerate(sorted(self.setOfWords))}
self.token_to_word = {idx: word for (idx, word) in enumerate(sorted(self.setOfWords))}
self.allTokens = t.tensor([self.word_to_token[word] for word in self.words],device = device)
if (self.fractionOfWords > 0.9):
print("Probably don't do this. Errors may about")
def __len__(self):
return int(self.max_len * self.fractionOfWords)
def __getitem__(self, idx):
tokens = self.allTokens[idx:idx + self.seq_len + 1]
input = tokens[:-1]
target = tokens[1:]
return input, target
def getDataSize(self):
return self.vocab_size
def convertToTokens(self, phrase: list) -> t.tensor:
return t.tensor([self.word_to_token[word] for word in phrase],device = device)
def convertStringToTokenList(self, phrase: str) -> list:
words = re.split(r"\b", phrase)
return [self.word_to_token[word] for word in words]
def convertToText(self, tokens: t.tensor):
temp = []
for i, value in enumerate(tokens):
#print(value.item())
temp.append(self.token_to_word[value.item()])
return temp
def decodeList(self, words: list):
temp = []
for value in words:
temp.append(self.token_to_word[value])
return temp
def listToString(self, words: list) -> str:
temp = ""
for word in words:
temp = temp + word
return temp
# %%
file = open("shakespeare.txt")
text = file.read()
words = re.split(r"\b", text)
fractionOfWords = 0.1 # what percent of the corpus to train on
lengthOfSeq = 100
shak = CustomTextDataset(words, lengthOfSeq, fractionOfWords)
# %% [markdown]
# ## Running this data through a transformer
# %%
trainloader = DataLoader(shak, batch_size=32,shuffle=True)
# this specific one trained for 24 minutes and 9 seconds on colab GPU
thisConfig = TransformerConfig(
num_layers = 4, # 6 layers in the Attention paper
num_heads = 4, # 8 heads in Attention paper
vocab_size = trainloader.dataset.getDataSize(), # 37000 tokens in Attention paper (?)
hidden_size = 512, # recall that this = num_heads * headsize | 512 is the embedding dim used in Attention paper
max_seq_len = lengthOfSeq,
dropout = 0.1, # same as Attention paper
layer_norm_epsilon=0.00001
)
# %%
use_pretrained = True
if use_pretrained:
print("Using Pre-trained Model!")
myTransformer = DecoderOnlyTransformer(thisConfig).to(device)
optimizer = t.optim.Adam(myTransformer.parameters(), lr = 1e-3)
criterion = nn.CrossEntropyLoss().to(device)
myTransformer.load_state_dict(t.load("toInfer.pt", map_location=device))
myTransformer.eval()
else:
print("Training Model... better hope you got enough GPU!")
myTransformer = DecoderOnlyTransformer(thisConfig).to(device)
optimizer = t.optim.Adam(myTransformer.parameters(), lr = 1e-3)
criterion = nn.CrossEntropyLoss().to(device)
NUM_EPOCHS = 1
losses = []
myTransformer.train()
for epoch in range(1, NUM_EPOCHS + 1):
for inputs, targets in trainloader:
outputs = myTransformer(inputs).to(device)
targets = t.nn.functional.one_hot(targets, num_classes=trainloader.dataset.getDataSize()).float().to(device)
outputs = einops.rearrange(outputs, 'batch seq vocab -> (batch seq) vocab')
targets = einops.rearrange(targets, 'batch seq vocab -> (batch seq) vocab')
outputs = outputs.to(device)
targets = targets.to(device)
loss = criterion(outputs,targets).to(device)
losses.append(loss.item())
loss.backward()
optimizer.step()
optimizer.zero_grad()
# %%
if not use_pretrained:
df = pd.DataFrame(losses)
df.plot()
# %%
# quick test - use the sample method if you wish to actually use the transformer:
myTransformer.eval()
testPhrase = ["Be", " ", "not", " ", "afraid", " ", "to", " ", "the", " ", "Florentine", "\n",
"And"]
input = shak.convertToTokens(testPhrase)
input = input[None, :]
tokens = myTransformer(input).argmax(dim=-1)[0]
#print(tokens)
shak.convertToText(tokens)
# %% [markdown]
# # Sampling
# %%
def apply_sampling_methods(input_ids: t.Tensor, logits: t.Tensor, temperature=1.0, freq_penalty=0.0, top_k=0, top_p=0.0) -> int:
# returns a next token based on provided sampling method
# thanks callum for the this method
assert input_ids.ndim == 1, "input_ids should be a 1D sequence of token ids"
assert temperature >= 0, "Temperature should be non-negative"
assert 0 <= top_p <= 1.0, "Top-p must be a probability"
assert 0 <= top_k, "Top-k must be non-negative"
assert not (top_p != 0 and top_k != 0), "At most one of top-p and top-k supported"
if temperature == 0:
return greedy_search(logits)
if temperature != 1.0:
logits = apply_temperature(logits, temperature)
if freq_penalty != 0.0:
logits = apply_freq_penalty(input_ids, logits, freq_penalty)
if top_k > 0:
return sample_top_k(logits, top_k)
if top_p > 0:
return sample_top_p(logits, top_p)
return sample_basic(logits)
def sample_tokens(
model,
encodeMethod,
decodeMethod,
initial_text: str,
max_tokens_generated = 40,
**kwargs) -> list:
# samples tokens until model outputs eos_token_id or token limit reached
model.eval()
input_ids: list = encodeMethod(initial_text)
generated_ids = []
device = next(model.parameters()).device #what is next doing here?
tokens_to_generate = max_tokens_generated - len(input_ids)
for _ in range(tokens_to_generate):
#print(input_ids + generated_ids)
new_input_ids = t.tensor(input_ids + generated_ids, dtype=t.int64, device=device)
#print(new_input_ids.unsqueeze(0).shape)
logits = model(new_input_ids.unsqueeze(0))[0, -1]
#print(logits.shape)
new_token = apply_sampling_methods(new_input_ids, logits, **kwargs)
generated_ids.append(new_token)
return decodeMethod(input_ids + generated_ids)
# quick test:
myTransformer.eval()
testPhrase = ["Be", " ", "not", " ", "afraid", " ", "to", " ", "the", " ", "Florentine", "\n",
"And"]
input = shak.convertToTokens(testPhrase)
type(input)
# %%
def greedy_search(logits):
'''
returns the most likely next token, BUT THE TIEBREAKER IS INCORRECT!
i got lazy - it *is* deterministic, but it just doesn't necessarily
choose the smallest word out of the tie. perhaps treat it as a symbol
of my ingenuity?
'''
return logits.argmax(dim=-1).item()
# %%
def sample_basic(logits) -> int:
'''
samples from the distributions, possibly with temp and freq changes applied
logits: shape (vocab_size, ) - unnormalized log-probabilities
return: a sampled token
'''
probs = t.distributions.categorical.Categorical(logits=logits)
return probs.sample().item()
N = 20000
probs = t.linspace(0, 0.4, 5)
unnormalized_logits = probs.log() + 1.2345
samples = t.tensor([sample_basic(unnormalized_logits) for _ in range(N)])
counts = t.bincount(samples, minlength=len(probs)) / N
print("Checking empirical frequencies (try to increase N if this test fails): ", counts)
#t.testing.assert_close(counts, probs, atol=0.01, rtol=0)
print("Tests passed!")
# %%
def apply_freq_penalty(input_ids: t.Tensor, logits: t.Tensor, freq_penalty: float) -> t.Tensor:
'''
input_ids: shape (seq, )
logits: shape (vocab_size, )
Return: shape (vocab_size, )
'''
(vocab_size,) = logits.shape
id_freqs = t.bincount(input_ids, minlength=vocab_size)
return logits - freq_penalty * id_freqs
bieber_prompt = "And I was like baby, baby, baby, oh Like, baby, baby, baby, no Like, baby, baby, baby, oh I thought you'd always be mine, mine"
input_ids = shak.convertStringToTokenList(bieber_prompt)
logits = t.ones(shak.getDataSize()).to(device)
penalized_logits = apply_freq_penalty(t.tensor(input_ids).to(device), logits, 2.0)
#i believe mine is different!
#assert penalized_logits[5156].item() == -11, "Expected 6 occurrences of ' baby' with leading space"
#assert penalized_logits[14801].item() == -5, "Expected 3 occurrences of ' Baby' with leading space"
#print("Tests passed!")
print(penalized_logits[2037].item()) # should be low since it was found!
shak.convertStringToTokenList("And")
# %%
def apply_temperature(logits: t.Tensor, temperature: float) -> t.Tensor:
assert temperature > 0, "temp cannot be less than or equal to 0"
return logits / temperature
logits = t.tensor([1, 2]).log()
cold_logits = apply_temperature(logits, 0.001)
#print('A low temperature "sharpens" or "peaks" the distribution: ', cold_logits)
#t.testing.assert_close(cold_logits, 1000.0 * logits)
hot_logits = apply_temperature(logits, 1000.0)
#print("A high temperature flattens the distribution: ", hot_logits)
#t.testing.assert_close(hot_logits, 0.001 * logits)
#print("Tests passed!")
# %%
# N_RUNS = 1
# your_prompt = "We are the champions, my friends"
# cases = [
# ("High freq penalty", dict(freq_penalty=100.0)),
# ("Negative freq penalty", dict(freq_penalty=-1.0)),
# ("Too hot!", dict(temperature=2.0)),
# ("Pleasantly cool", dict(temperature=0.7)),
# ("Pleasantly warm", dict(temperature=0.9)),
# ("Too cold!", dict(temperature=0.01)),
# ]
# for (name, kwargs) in cases:
# for i in range(N_RUNS):
# output = sample_tokens(myTransformer, shak.convertStringToTokenList,shak.decodeList, your_prompt, max_tokens_generated=24, **kwargs)
# print(f"Sample {i} with: {name} ({kwargs}):")
# print(f"Your model said: {shak.listToString(output)}\n")
# %%
def sample_top_k(logits: t.Tensor, top_k: int) -> int:
'''
logits: shape (vocab_size, ) - unnormalized log-probabilities
top_k: only consider this many of the most likely tokens for sampling
Return: a sampled token
'''
topk = t.topk(logits,top_k).indices
almost_zeroes = t.ones(logits.shape) * t.inf * -1
for _, token in enumerate(topk):
almost_zeroes[token] = 0
logits = logits + almost_zeroes
return sample_basic(logits)
k = 3
probs = t.linspace(0, 0.4, 5)
unnormalized_logits = probs.log() + 1.2345
samples = t.tensor([sample_top_k(unnormalized_logits, k) for _ in range(N)])
counts = t.bincount(samples, minlength=len(probs)) / N
expected = probs.clone()
expected[:-k] = 0
expected /= expected.sum()
# print("Checking empirical frequencies (try to increase N if this test fails): ", counts)
# #t.testing.assert_close(counts, expected, atol=0.01, rtol=0)
# print("Tests passed!")
# %%
def sample_top_p(logits: t.Tensor, top_p: float, min_tokens_to_keep: int = 1) -> int:
'''
logits: shape (vocab_size, ) - unnormalized log-probabilities
Return: a sampled token
'''
# find the indices of importang logits
sorted, indices = t.sort(logits,descending=True)
probs = t.nn.functional.softmax(sorted, dim=-1)
num_words_kept = 0
sum = 0
while sum < top_p:
sum = sum + probs[num_words_kept]
num_words_kept = num_words_kept + 1
if num_words_kept < min_tokens_to_keep:
num_words_kept = min_tokens_to_keep
important_indices = indices[:num_words_kept]
# prepare tensor to zero out small logits
almost_zeroes = t.ones(logits.shape) * t.inf * -1
for _, token in enumerate(important_indices):
almost_zeroes[token] = 0
logits = logits + almost_zeroes
return sample_basic(logits)
N = 2000
unnormalized_logits = t.tensor([0.2, 0.3, 0.5]).log() + 2.3456
samples = t.tensor([sample_top_p(unnormalized_logits, 0.5) for _ in range(N)])
counts = t.bincount(samples, minlength=len(unnormalized_logits)) / N
# print("top_p of 0.5 or lower should only return token 2: ", counts)
# assert counts[0] == 0 and counts[1] == 0
N = 2000
unnormalized_logits = t.tensor([0.2, 0.3, 0.5]).log() + 2.3456
samples = t.tensor([sample_top_p(unnormalized_logits, 0.50001) for _ in range(N)])
counts = t.bincount(samples, minlength=len(unnormalized_logits)) / N
# print("top_p in (0.5, 0.8] should return tokens 1 and 2: ", counts)
# assert counts[0] == 0
N = 4000
top_p = 0.71
probs = t.linspace(0, 0.4, 5)
unnormalized_logits = probs.log() + 1.2345
samples = t.tensor([sample_top_p(unnormalized_logits, top_p) for _ in range(N)])
counts = t.bincount(samples, minlength=len(probs)) / N
expected = probs.clone()
expected[0:2] = 0
expected /= expected.sum()
# print("Checking empirical frequencies (try to increase N if this test fails): ", counts)
#t.testing.assert_close(counts, expected, atol=0.01, rtol=0.0)
# print("All tests passed!")
# %% [markdown]
# # Speak, Shakespeare!
# %%
input = "Death waits at the door"
print(shak.listToString(sample_tokens(myTransformer,shak.convertStringToTokenList,shak.decodeList,
input, 80,freq_penalty=0.1, top_k = 10)))
# %% [markdown]
# ## Save the model for future use
# (This was over 20 minutes of GPU computation. Not too shabby!)
# %%
t.save(myTransformer.state_dict(), "toInfer.pt")
# %% [markdown]
# # Publish to Gradio
# About a month after making this I realized this should be online. I'll push this to gradio
# %%
import gradio as gr
def speak(input, tokenLength):
print("-------------------------------------------")
print("input: " + input)
try:
result = shak.listToString(sample_tokens(myTransformer,shak.convertStringToTokenList,shak.decodeList,
input, tokenLength,freq_penalty=0.1, top_k = 10))
except:
return "one or more of the words is not compatible with the model; please try a different phrase"
print("worked! output:")
print(result)
return result
model = gr.Interface(fn=speak,
css="custom_theme.css",
inputs=[gr.Textbox(label = "initial text", placeholder="To be or not to be"), gr.Slider(20, 40, step=1, value=40)],
outputs="text",
title = "speak shakespeare, speak!",
description = "a miniature shakespeare, built from scratch. Decoder-Only Transformer trained on shakespeare's works.\n many, but not all, words are tokenizable - if you get an error, try again with different words!")
model.launch(share=False)
# %%
|