File size: 28,493 Bytes
58d33f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
import hashlib
import json
import tempfile
from copy import deepcopy
from pathlib import Path
from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple, Union

from langchain.callbacks.base import BaseCallbackHandler
from langchain.schema import AgentAction, AgentFinish, LLMResult


def import_wandb() -> Any:
    try:
        import wandb  # noqa: F401
    except ImportError:
        raise ImportError(
            "To use the wandb callback manager you need to have the `wandb` python "
            "package installed. Please install it with `pip install wandb`"
        )
    return wandb


def import_spacy() -> Any:
    try:
        import spacy  # noqa: F401
    except ImportError:
        raise ImportError(
            "To use the wandb callback manager you need to have the `spacy` python "
            "package installed. Please install it with `pip install spacy`"
        )
    return spacy


def import_pandas() -> Any:
    try:
        import pandas  # noqa: F401
    except ImportError:
        raise ImportError(
            "To use the wandb callback manager you need to have the `pandas` python "
            "package installed. Please install it with `pip install pandas`"
        )
    return pandas


def import_textstat() -> Any:
    try:
        import textstat  # noqa: F401
    except ImportError:
        raise ImportError(
            "To use the wandb callback manager you need to have the `textstat` python "
            "package installed. Please install it with `pip install textstat`"
        )
    return textstat


def _flatten_dict(
    nested_dict: Dict[str, Any], parent_key: str = "", sep: str = "_"
) -> Iterable[Tuple[str, Any]]:
    """
    Generator that yields flattened items from a nested dictionary for a flat dict.

    Parameters:
        nested_dict (dict): The nested dictionary to flatten.
        parent_key (str): The prefix to prepend to the keys of the flattened dict.
        sep (str): The separator to use between the parent key and the key of the
            flattened dictionary.

    Yields:
        (str, any): A key-value pair from the flattened dictionary.
    """
    for key, value in nested_dict.items():
        new_key = parent_key + sep + key if parent_key else key
        if isinstance(value, dict):
            yield from _flatten_dict(value, new_key, sep)
        else:
            yield new_key, value


def flatten_dict(
    nested_dict: Dict[str, Any], parent_key: str = "", sep: str = "_"
) -> Dict[str, Any]:
    """Flattens a nested dictionary into a flat dictionary.

    Parameters:
        nested_dict (dict): The nested dictionary to flatten.
        parent_key (str): The prefix to prepend to the keys of the flattened dict.
        sep (str): The separator to use between the parent key and the key of the
            flattened dictionary.

    Returns:
        (dict): A flat dictionary.

    """
    flat_dict = {k: v for k, v in _flatten_dict(nested_dict, parent_key, sep)}
    return flat_dict


def hash_string(s: str) -> str:
    """Hash a string using sha1.

    Parameters:
        s (str): The string to hash.

    Returns:
        (str): The hashed string.
    """
    return hashlib.sha1(s.encode("utf-8")).hexdigest()


def load_json_to_dict(json_path: Union[str, Path]) -> dict:
    """Load json file to a dictionary.

    Parameters:
        json_path (str): The path to the json file.

    Returns:
        (dict): The dictionary representation of the json file.
    """
    with open(json_path, "r") as f:
        data = json.load(f)
    return data


def analyze_text(
    text: str,
    complexity_metrics: bool = True,
    visualize: bool = True,
    nlp: Any = None,
    output_dir: Optional[Union[str, Path]] = None,
) -> dict:
    """Analyze text using textstat and spacy.

    Parameters:
        text (str): The text to analyze.
        complexity_metrics (bool): Whether to compute complexity metrics.
        visualize (bool): Whether to visualize the text.
        nlp (spacy.lang): The spacy language model to use for visualization.
        output_dir (str): The directory to save the visualization files to.

    Returns:
        (dict): A dictionary containing the complexity metrics and visualization
            files serialized in a wandb.Html element.
    """
    resp = {}
    textstat = import_textstat()
    wandb = import_wandb()
    spacy = import_spacy()
    if complexity_metrics:
        text_complexity_metrics = {
            "flesch_reading_ease": textstat.flesch_reading_ease(text),
            "flesch_kincaid_grade": textstat.flesch_kincaid_grade(text),
            "smog_index": textstat.smog_index(text),
            "coleman_liau_index": textstat.coleman_liau_index(text),
            "automated_readability_index": textstat.automated_readability_index(text),
            "dale_chall_readability_score": textstat.dale_chall_readability_score(text),
            "difficult_words": textstat.difficult_words(text),
            "linsear_write_formula": textstat.linsear_write_formula(text),
            "gunning_fog": textstat.gunning_fog(text),
            "text_standard": textstat.text_standard(text),
            "fernandez_huerta": textstat.fernandez_huerta(text),
            "szigriszt_pazos": textstat.szigriszt_pazos(text),
            "gutierrez_polini": textstat.gutierrez_polini(text),
            "crawford": textstat.crawford(text),
            "gulpease_index": textstat.gulpease_index(text),
            "osman": textstat.osman(text),
        }
        resp.update(text_complexity_metrics)

    if visualize and nlp and output_dir is not None:
        doc = nlp(text)

        dep_out = spacy.displacy.render(  # type: ignore
            doc, style="dep", jupyter=False, page=True
        )
        dep_output_path = Path(output_dir, hash_string(f"dep-{text}") + ".html")
        dep_output_path.open("w", encoding="utf-8").write(dep_out)

        ent_out = spacy.displacy.render(  # type: ignore
            doc, style="ent", jupyter=False, page=True
        )
        ent_output_path = Path(output_dir, hash_string(f"ent-{text}") + ".html")
        ent_output_path.open("w", encoding="utf-8").write(ent_out)

        text_visualizations = {
            "dependency_tree": wandb.Html(str(dep_output_path)),
            "entities": wandb.Html(str(ent_output_path)),
        }
        resp.update(text_visualizations)

    return resp


def construct_html_from_prompt_and_generation(prompt: str, generation: str) -> Any:
    """Construct an html element from a prompt and a generation.

    Parameters:
        prompt (str): The prompt.
        generation (str): The generation.

    Returns:
        (wandb.Html): The html element."""
    wandb = import_wandb()
    formatted_prompt = prompt.replace("\n", "<br>")
    formatted_generation = generation.replace("\n", "<br>")

    return wandb.Html(
        f"""
    <p style="color:black;">{formatted_prompt}:</p>
    <blockquote>
      <p style="color:green;">
        {formatted_generation}
      </p>
    </blockquote>
    """,
        inject=False,
    )


class BaseMetadataCallbackHandler:
    """This class handles the metadata and associated function states for callbacks.

    Attributes:
        step (int): The current step.
        starts (int): The number of times the start method has been called.
        ends (int): The number of times the end method has been called.
        errors (int): The number of times the error method has been called.
        text_ctr (int): The number of times the text method has been called.
        ignore_llm_ (bool): Whether to ignore llm callbacks.
        ignore_chain_ (bool): Whether to ignore chain callbacks.
        ignore_agent_ (bool): Whether to ignore agent callbacks.
        always_verbose_ (bool): Whether to always be verbose.
        chain_starts (int): The number of times the chain start method has been called.
        chain_ends (int): The number of times the chain end method has been called.
        llm_starts (int): The number of times the llm start method has been called.
        llm_ends (int): The number of times the llm end method has been called.
        llm_streams (int): The number of times the text method has been called.
        tool_starts (int): The number of times the tool start method has been called.
        tool_ends (int): The number of times the tool end method has been called.
        agent_ends (int): The number of times the agent end method has been called.
        on_llm_start_records (list): A list of records of the on_llm_start method.
        on_llm_token_records (list): A list of records of the on_llm_token method.
        on_llm_end_records (list): A list of records of the on_llm_end method.
        on_chain_start_records (list): A list of records of the on_chain_start method.
        on_chain_end_records (list): A list of records of the on_chain_end method.
        on_tool_start_records (list): A list of records of the on_tool_start method.
        on_tool_end_records (list): A list of records of the on_tool_end method.
        on_agent_finish_records (list): A list of records of the on_agent_end method.
    """

    def __init__(self) -> None:
        self.step = 0

        self.starts = 0
        self.ends = 0
        self.errors = 0
        self.text_ctr = 0

        self.ignore_llm_ = False
        self.ignore_chain_ = False
        self.ignore_agent_ = False
        self.always_verbose_ = False

        self.chain_starts = 0
        self.chain_ends = 0

        self.llm_starts = 0
        self.llm_ends = 0
        self.llm_streams = 0

        self.tool_starts = 0
        self.tool_ends = 0

        self.agent_ends = 0

        self.on_llm_start_records: list = []
        self.on_llm_token_records: list = []
        self.on_llm_end_records: list = []

        self.on_chain_start_records: list = []
        self.on_chain_end_records: list = []

        self.on_tool_start_records: list = []
        self.on_tool_end_records: list = []

        self.on_text_records: list = []
        self.on_agent_finish_records: list = []
        self.on_agent_action_records: list = []

    @property
    def always_verbose(self) -> bool:
        """Whether to call verbose callbacks even if verbose is False."""
        return self.always_verbose_

    @property
    def ignore_llm(self) -> bool:
        """Whether to ignore LLM callbacks."""
        return self.ignore_llm_

    @property
    def ignore_chain(self) -> bool:
        """Whether to ignore chain callbacks."""
        return self.ignore_chain_

    @property
    def ignore_agent(self) -> bool:
        """Whether to ignore agent callbacks."""
        return self.ignore_agent_

    def get_custom_callback_meta(self) -> Dict[str, Any]:
        return {
            "step": self.step,
            "starts": self.starts,
            "ends": self.ends,
            "errors": self.errors,
            "text_ctr": self.text_ctr,
            "chain_starts": self.chain_starts,
            "chain_ends": self.chain_ends,
            "llm_starts": self.llm_starts,
            "llm_ends": self.llm_ends,
            "llm_streams": self.llm_streams,
            "tool_starts": self.tool_starts,
            "tool_ends": self.tool_ends,
            "agent_ends": self.agent_ends,
        }

    def reset_callback_meta(self) -> None:
        """Reset the callback metadata."""
        self.step = 0

        self.starts = 0
        self.ends = 0
        self.errors = 0
        self.text_ctr = 0

        self.ignore_llm_ = False
        self.ignore_chain_ = False
        self.ignore_agent_ = False
        self.always_verbose_ = False

        self.chain_starts = 0
        self.chain_ends = 0

        self.llm_starts = 0
        self.llm_ends = 0
        self.llm_streams = 0

        self.tool_starts = 0
        self.tool_ends = 0

        self.agent_ends = 0

        self.on_llm_start_records = []
        self.on_llm_token_records = []
        self.on_llm_end_records = []

        self.on_chain_start_records = []
        self.on_chain_end_records = []

        self.on_tool_start_records = []
        self.on_tool_end_records = []

        self.on_text_records = []
        self.on_agent_finish_records = []
        self.on_agent_action_records = []
        return None


class WandbCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler):
    """Callback Handler that logs to Weights and Biases.

    Parameters:
        job_type (str): The type of job.
        project (str): The project to log to.
        entity (str): The entity to log to.
        tags (list): The tags to log.
        group (str): The group to log to.
        name (str): The name of the run.
        notes (str): The notes to log.
        visualize (bool): Whether to visualize the run.
        complexity_metrics (bool): Whether to log complexity metrics.
        stream_logs (bool): Whether to stream callback actions to W&B

    This handler will utilize the associated callback method called and formats
    the input of each callback function with metadata regarding the state of LLM run,
    and adds the response to the list of records for both the {method}_records and
    action. It then logs the response using the run.log() method to Weights and Biases.
    """

    def __init__(
        self,
        job_type: Optional[str] = None,
        project: Optional[str] = "langchain_callback_demo",
        entity: Optional[str] = None,
        tags: Optional[Sequence] = None,
        group: Optional[str] = None,
        name: Optional[str] = None,
        notes: Optional[str] = None,
        visualize: bool = False,
        complexity_metrics: bool = False,
        stream_logs: bool = False,
    ) -> None:
        """Initialize callback handler."""

        wandb = import_wandb()
        import_pandas()
        import_textstat()
        spacy = import_spacy()
        super().__init__()

        self.job_type = job_type
        self.project = project
        self.entity = entity
        self.tags = tags
        self.group = group
        self.name = name
        self.notes = notes
        self.visualize = visualize
        self.complexity_metrics = complexity_metrics
        self.stream_logs = stream_logs

        self.temp_dir = tempfile.TemporaryDirectory()
        self.run: wandb.sdk.wandb_run.Run = wandb.init(  # type: ignore
            job_type=self.job_type,
            project=self.project,
            entity=self.entity,
            tags=self.tags,
            group=self.group,
            name=self.name,
            notes=self.notes,
        )
        warning = (
            "The wandb callback is currently in beta and is subject to change "
            "based on updates to `langchain`. Please report any issues to "
            "https://github.com/wandb/wandb/issues with the tag `langchain`."
        )
        wandb.termwarn(
            warning,
            repeat=False,
        )
        self.callback_columns: list = []
        self.action_records: list = []
        self.complexity_metrics = complexity_metrics
        self.visualize = visualize
        self.nlp = spacy.load("en_core_web_sm")

    def _init_resp(self) -> Dict:
        return {k: None for k in self.callback_columns}

    def on_llm_start(
        self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
    ) -> None:
        """Run when LLM starts."""
        self.step += 1
        self.llm_starts += 1
        self.starts += 1

        resp = self._init_resp()
        resp.update({"action": "on_llm_start"})
        resp.update(flatten_dict(serialized))
        resp.update(self.get_custom_callback_meta())

        for prompt in prompts:
            prompt_resp = deepcopy(resp)
            prompt_resp["prompts"] = prompt
            self.on_llm_start_records.append(prompt_resp)
            self.action_records.append(prompt_resp)
            if self.stream_logs:
                self.run.log(prompt_resp)

    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        """Run when LLM generates a new token."""
        self.step += 1
        self.llm_streams += 1

        resp = self._init_resp()
        resp.update({"action": "on_llm_new_token", "token": token})
        resp.update(self.get_custom_callback_meta())

        self.on_llm_token_records.append(resp)
        self.action_records.append(resp)
        if self.stream_logs:
            self.run.log(resp)

    def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
        """Run when LLM ends running."""
        self.step += 1
        self.llm_ends += 1
        self.ends += 1

        resp = self._init_resp()
        resp.update({"action": "on_llm_end"})
        resp.update(flatten_dict(response.llm_output or {}))
        resp.update(self.get_custom_callback_meta())

        for generations in response.generations:
            for generation in generations:
                generation_resp = deepcopy(resp)
                generation_resp.update(flatten_dict(generation.dict()))
                generation_resp.update(
                    analyze_text(
                        generation.text,
                        complexity_metrics=self.complexity_metrics,
                        visualize=self.visualize,
                        nlp=self.nlp,
                        output_dir=self.temp_dir.name,
                    )
                )
                self.on_llm_end_records.append(generation_resp)
                self.action_records.append(generation_resp)
                if self.stream_logs:
                    self.run.log(generation_resp)

    def on_llm_error(
        self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
    ) -> None:
        """Run when LLM errors."""
        self.step += 1
        self.errors += 1

    def on_chain_start(
        self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
    ) -> None:
        """Run when chain starts running."""
        self.step += 1
        self.chain_starts += 1
        self.starts += 1

        resp = self._init_resp()
        resp.update({"action": "on_chain_start"})
        resp.update(flatten_dict(serialized))
        resp.update(self.get_custom_callback_meta())

        chain_input = inputs["input"]

        if isinstance(chain_input, str):
            input_resp = deepcopy(resp)
            input_resp["input"] = chain_input
            self.on_chain_start_records.append(input_resp)
            self.action_records.append(input_resp)
            if self.stream_logs:
                self.run.log(input_resp)
        elif isinstance(chain_input, list):
            for inp in chain_input:
                input_resp = deepcopy(resp)
                input_resp.update(inp)
                self.on_chain_start_records.append(input_resp)
                self.action_records.append(input_resp)
                if self.stream_logs:
                    self.run.log(input_resp)
        else:
            raise ValueError("Unexpected data format provided!")

    def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
        """Run when chain ends running."""
        self.step += 1
        self.chain_ends += 1
        self.ends += 1

        resp = self._init_resp()
        resp.update({"action": "on_chain_end", "outputs": outputs["output"]})
        resp.update(self.get_custom_callback_meta())

        self.on_chain_end_records.append(resp)
        self.action_records.append(resp)
        if self.stream_logs:
            self.run.log(resp)

    def on_chain_error(
        self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
    ) -> None:
        """Run when chain errors."""
        self.step += 1
        self.errors += 1

    def on_tool_start(
        self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
    ) -> None:
        """Run when tool starts running."""
        self.step += 1
        self.tool_starts += 1
        self.starts += 1

        resp = self._init_resp()
        resp.update({"action": "on_tool_start", "input_str": input_str})
        resp.update(flatten_dict(serialized))
        resp.update(self.get_custom_callback_meta())

        self.on_tool_start_records.append(resp)
        self.action_records.append(resp)
        if self.stream_logs:
            self.run.log(resp)

    def on_tool_end(self, output: str, **kwargs: Any) -> None:
        """Run when tool ends running."""
        self.step += 1
        self.tool_ends += 1
        self.ends += 1

        resp = self._init_resp()
        resp.update({"action": "on_tool_end", "output": output})
        resp.update(self.get_custom_callback_meta())

        self.on_tool_end_records.append(resp)
        self.action_records.append(resp)
        if self.stream_logs:
            self.run.log(resp)

    def on_tool_error(
        self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any
    ) -> None:
        """Run when tool errors."""
        self.step += 1
        self.errors += 1

    def on_text(self, text: str, **kwargs: Any) -> None:
        """
        Run when agent is ending.
        """
        self.step += 1
        self.text_ctr += 1

        resp = self._init_resp()
        resp.update({"action": "on_text", "text": text})
        resp.update(self.get_custom_callback_meta())

        self.on_text_records.append(resp)
        self.action_records.append(resp)
        if self.stream_logs:
            self.run.log(resp)

    def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
        """Run when agent ends running."""
        self.step += 1
        self.agent_ends += 1
        self.ends += 1

        resp = self._init_resp()
        resp.update(
            {
                "action": "on_agent_finish",
                "output": finish.return_values["output"],
                "log": finish.log,
            }
        )
        resp.update(self.get_custom_callback_meta())

        self.on_agent_finish_records.append(resp)
        self.action_records.append(resp)
        if self.stream_logs:
            self.run.log(resp)

    def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
        """Run on agent action."""
        self.step += 1
        self.tool_starts += 1
        self.starts += 1

        resp = self._init_resp()
        resp.update(
            {
                "action": "on_agent_action",
                "tool": action.tool,
                "tool_input": action.tool_input,
                "log": action.log,
            }
        )
        resp.update(self.get_custom_callback_meta())
        self.on_agent_action_records.append(resp)
        self.action_records.append(resp)
        if self.stream_logs:
            self.run.log(resp)

    def _create_session_analysis_df(self) -> Any:
        """Create a dataframe with all the information from the session."""
        pd = import_pandas()
        on_llm_start_records_df = pd.DataFrame(self.on_llm_start_records)
        on_llm_end_records_df = pd.DataFrame(self.on_llm_end_records)
        selected_columns = ["step", "prompts", "name"]
        on_llm_start_records_selected_df = on_llm_start_records_df[selected_columns]
        llm_input_prompts_df = (
            on_llm_start_records_selected_df
            .dropna(axis=1)
            .rename({"step": "prompt_step"}, axis=1)
        )
        complexity_metrics_columns = []
        visualizations_columns = []

        if self.complexity_metrics:
            complexity_metrics_columns = [
                "flesch_reading_ease",
                "flesch_kincaid_grade",
                "smog_index",
                "coleman_liau_index",
                "automated_readability_index",
                "dale_chall_readability_score",
                "difficult_words",
                "linsear_write_formula",
                "gunning_fog",
                "text_standard",
                "fernandez_huerta",
                "szigriszt_pazos",
                "gutierrez_polini",
                "crawford",
                "gulpease_index",
                "osman",
            ]

        if self.visualize:
            visualizations_columns = ["dependency_tree", "entities"]

        llm_outputs_df = (
            on_llm_end_records_df[
                [
                    "step",
                    "text",
                    "token_usage_total_tokens",
                    "token_usage_prompt_tokens",
                    "token_usage_completion_tokens",
                ]
                + complexity_metrics_columns
                + visualizations_columns
            ]
            .dropna(axis=1)
            .rename({"step": "output_step", "text": "output"}, axis=1)
        )
        session_analysis_df = pd.concat([llm_input_prompts_df, llm_outputs_df], axis=1)
        session_analysis_df["chat_html"] = session_analysis_df[
            ["prompts", "output"]
        ].apply(
            lambda row: construct_html_from_prompt_and_generation(
                row["prompts"], row["output"]
            ),
            axis=1,
        )
        return session_analysis_df

    def flush_tracker(
        self,
        langchain_asset: Any = None,
        reset: bool = True,
        finish: bool = False,
        job_type: Optional[str] = None,
        project: Optional[str] = None,
        entity: Optional[str] = None,
        tags: Optional[Sequence] = None,
        group: Optional[str] = None,
        name: Optional[str] = None,
        notes: Optional[str] = None,
        visualize: Optional[bool] = None,
        complexity_metrics: Optional[bool] = None,
    ) -> None:
        """Flush the tracker and reset the session.

        Args:
            langchain_asset: The langchain asset to save.
            reset: Whether to reset the session.
            finish: Whether to finish the run.
            job_type: The job type.
            project: The project.
            entity: The entity.
            tags: The tags.
            group: The group.
            name: The name.
            notes: The notes.
            visualize: Whether to visualize.
            complexity_metrics: Whether to compute complexity metrics.

            Returns:
                None
        """
        pd = import_pandas()
        wandb = import_wandb()
        action_records_table = wandb.Table(dataframe=pd.DataFrame(self.action_records))
        session_analysis_dataframe = self._create_session_analysis_df()
        session_analysis_table = wandb.Table(
            dataframe=session_analysis_dataframe
        )
        self.run.log(
            {
                "action_records": action_records_table,
                "session_analysis": session_analysis_table,
            }
        )

        if langchain_asset:
            langchain_asset_path = Path(self.temp_dir.name, "model.json")
            model_artifact = wandb.Artifact(name="model", type="model")
            model_artifact.add(action_records_table, name="action_records")
            model_artifact.add(session_analysis_table, name="session_analysis")
            try:
                langchain_asset.save_agent(langchain_asset_path)
                model_artifact.add_file(str(langchain_asset_path))
                model_artifact.metadata = load_json_to_dict(langchain_asset_path)
            except ValueError:
                langchain_asset.save_agent(langchain_asset_path)
                model_artifact.add_file(str(langchain_asset_path))
                model_artifact.metadata = load_json_to_dict(langchain_asset_path)
            except NotImplementedError as e:
                print("Could not save model.")
                print(repr(e))
                pass
            self.run.log_artifact(model_artifact)

        if finish or reset:
            self.run.finish()
            self.temp_dir.cleanup()
            self.reset_callback_meta()
        if reset:
            self.__init__(  # type: ignore
                job_type=job_type if job_type else self.job_type,
                project=project if project else self.project,
                entity=entity if entity else self.entity,
                tags=tags if tags else self.tags,
                group=group if group else self.group,
                name=name if name else self.name,
                notes=notes if notes else self.notes,
                visualize=visualize if visualize else self.visualize,
                complexity_metrics=complexity_metrics
                if complexity_metrics
                else self.complexity_metrics,
            )