File size: 11,988 Bytes
58d33f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
"""Wrapper around Atlas by Nomic."""
from __future__ import annotations

import logging
import uuid
from typing import Any, Iterable, List, Optional

import numpy as np

from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore

logger = logging.getLogger()


class AtlasDB(VectorStore):
    """Wrapper around Atlas: Nomic's neural database and rhizomatic instrument.

    To use, you should have the ``nomic`` python package installed.

    Example:
        .. code-block:: python

                from langchain.vectorstores import AtlasDB
                from langchain.embeddings.openai import OpenAIEmbeddings

                embeddings = OpenAIEmbeddings()
                vectorstore = AtlasDB("my_project", embeddings.embed_query)
    """

    _ATLAS_DEFAULT_ID_FIELD = "atlas_id"

    def __init__(
        self,
        name: str,
        embedding_function: Optional[Embeddings] = None,
        api_key: Optional[str] = None,
        description: str = "A description for your project",
        is_public: bool = True,
        reset_project_if_exists: bool = False,
    ) -> None:
        """
        Initialize the Atlas Client

        Args:
            name (str): The name of your project. If the project already exists,
                it will be loaded.
            embedding_function (Optional[Callable]): An optional function used for
                embedding your data. If None, data will be embedded with
                Nomic's embed model.
            api_key (str): Your nomic API key
            description (str): A description for your project.
            is_public (bool): Whether your project is publicly accessible.
                True by default.
            reset_project_if_exists (bool): Whether to reset this project if it
                already exists. Default False.
                Generally userful during development and testing.
        """
        try:
            import nomic
            from nomic import AtlasProject
        except ImportError:
            raise ValueError(
                "Could not import nomic python package. "
                "Please install it with `pip install nomic`."
            )

        if api_key is None:
            raise ValueError("No API key provided. Sign up at atlas.nomic.ai!")
        nomic.login(api_key)

        self._embedding_function = embedding_function
        modality = "text"
        if self._embedding_function is not None:
            modality = "embedding"

        # Check if the project exists, create it if not
        self.project = AtlasProject(
            name=name,
            description=description,
            modality=modality,
            is_public=is_public,
            reset_project_if_exists=reset_project_if_exists,
            unique_id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD,
        )
        self.project._latest_project_state()

    def add_texts(
        self,
        texts: Iterable[str],
        metadatas: Optional[List[dict]] = None,
        ids: Optional[List[str]] = None,
        refresh: bool = True,
        **kwargs: Any,
    ) -> List[str]:
        """Run more texts through the embeddings and add to the vectorstore.

        Args:
            texts (Iterable[str]): Texts to add to the vectorstore.
            metadatas (Optional[List[dict]], optional): Optional list of metadatas.
            ids (Optional[List[str]]): An optional list of ids.
            refresh(bool): Whether or not to refresh indices with the updated data.
                Default True.
        Returns:
            List[str]: List of IDs of the added texts.
        """

        if (
            metadatas is not None
            and len(metadatas) > 0
            and "text" in metadatas[0].keys()
        ):
            raise ValueError("Cannot accept key text in metadata!")

        texts = list(texts)
        if ids is None:
            ids = [str(uuid.uuid1()) for _ in texts]

        # Embedding upload case
        if self._embedding_function is not None:
            _embeddings = self._embedding_function.embed_documents(texts)
            embeddings = np.stack(_embeddings)
            if metadatas is None:
                data = [
                    {AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i], "text": texts[i]}
                    for i, _ in enumerate(texts)
                ]
            else:
                for i in range(len(metadatas)):
                    metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i]
                    metadatas[i]["text"] = texts[i]
                data = metadatas

            self.project._validate_map_data_inputs(
                [], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data
            )
            with self.project.wait_for_project_lock():
                self.project.add_embeddings(embeddings=embeddings, data=data)
        # Text upload case
        else:
            if metadatas is None:
                data = [
                    {"text": text, AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i]}
                    for i, text in enumerate(texts)
                ]
            else:
                for i, text in enumerate(texts):
                    metadatas[i]["text"] = texts
                    metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i]
                data = metadatas

            self.project._validate_map_data_inputs(
                [], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data
            )

            with self.project.wait_for_project_lock():
                self.project.add_text(data)

        if refresh:
            if len(self.project.indices) > 0:
                with self.project.wait_for_project_lock():
                    self.project.rebuild_maps()

        return ids

    def create_index(self, **kwargs: Any) -> Any:
        """Creates an index in your project.

        See
        https://docs.nomic.ai/atlas_api.html#nomic.project.AtlasProject.create_index
        for full detail.
        """
        with self.project.wait_for_project_lock():
            return self.project.create_index(**kwargs)

    def similarity_search(
        self,
        query: str,
        k: int = 4,
        **kwargs: Any,
    ) -> List[Document]:
        """Run similarity search with AtlasDB

        Args:
            query (str): Query text to search for.
            k (int): Number of results to return. Defaults to 4.

        Returns:
            List[Document]: List of documents most similar to the query text.
        """
        if self._embedding_function is None:
            raise NotImplementedError(
                "AtlasDB requires an embedding_function for text similarity search!"
            )

        _embedding = self._embedding_function.embed_documents([query])[0]
        embedding = np.array(_embedding).reshape(1, -1)
        with self.project.wait_for_project_lock():
            neighbors, _ = self.project.projections[0].vector_search(
                queries=embedding, k=k
            )
            datas = self.project.get_data(ids=neighbors[0])

        docs = [
            Document(page_content=datas[i]["text"], metadata=datas[i])
            for i, neighbor in enumerate(neighbors)
        ]
        return docs

    @classmethod
    def from_texts(
        cls,
        texts: List[str],
        embedding: Optional[Embeddings] = None,
        metadatas: Optional[List[dict]] = None,
        ids: Optional[List[str]] = None,
        name: Optional[str] = None,
        api_key: Optional[str] = None,
        description: str = "A description for your project",
        is_public: bool = True,
        reset_project_if_exists: bool = False,
        index_kwargs: Optional[dict] = None,
        **kwargs: Any,
    ) -> AtlasDB:
        """Create an AtlasDB vectorstore from a raw documents.

        Args:
            texts (List[str]): The list of texts to ingest.
            name (str): Name of the project to create.
            api_key (str): Your nomic API key,
            embedding (Optional[Embeddings]): Embedding function. Defaults to None.
            metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
            ids (Optional[List[str]]): Optional list of document IDs. If None,
                ids will be auto created
            description (str): A description for your project.
            is_public (bool): Whether your project is publicly accessible.
                True by default.
            reset_project_if_exists (bool): Whether to reset this project if it
                already exists. Default False.
                Generally userful during development and testing.
            index_kwargs (Optional[dict]): Dict of kwargs for index creation.
                See https://docs.nomic.ai/atlas_api.html

        Returns:
            AtlasDB: Nomic's neural database and finest rhizomatic instrument
        """
        if name is None or api_key is None:
            raise ValueError("`name` and `api_key` cannot be None.")

        # Inject relevant kwargs
        all_index_kwargs = {"name": name + "_index", "indexed_field": "text"}
        if index_kwargs is not None:
            for k, v in index_kwargs.items():
                all_index_kwargs[k] = v

        # Build project
        atlasDB = cls(
            name,
            embedding_function=embedding,
            api_key=api_key,
            description="A description for your project",
            is_public=is_public,
            reset_project_if_exists=reset_project_if_exists,
        )
        with atlasDB.project.wait_for_project_lock():
            atlasDB.add_texts(texts=texts, metadatas=metadatas, ids=ids)
            atlasDB.create_index(**all_index_kwargs)
        return atlasDB

    @classmethod
    def from_documents(
        cls,
        documents: List[Document],
        embedding: Optional[Embeddings] = None,
        ids: Optional[List[str]] = None,
        name: Optional[str] = None,
        api_key: Optional[str] = None,
        persist_directory: Optional[str] = None,
        description: str = "A description for your project",
        is_public: bool = True,
        reset_project_if_exists: bool = False,
        index_kwargs: Optional[dict] = None,
        **kwargs: Any,
    ) -> AtlasDB:
        """Create an AtlasDB vectorstore from a list of documents.

        Args:
            name (str): Name of the collection to create.
            api_key (str): Your nomic API key,
            documents (List[Document]): List of documents to add to the vectorstore.
            embedding (Optional[Embeddings]): Embedding function. Defaults to None.
            ids (Optional[List[str]]): Optional list of document IDs. If None,
                ids will be auto created
            description (str): A description for your project.
            is_public (bool): Whether your project is publicly accessible.
                True by default.
            reset_project_if_exists (bool): Whether to reset this project if
                it already exists. Default False.
                Generally userful during development and testing.
            index_kwargs (Optional[dict]): Dict of kwargs for index creation.
                See https://docs.nomic.ai/atlas_api.html

        Returns:
            AtlasDB: Nomic's neural database and finest rhizomatic instrument
        """
        if name is None or api_key is None:
            raise ValueError("`name` and `api_key` cannot be None.")
        texts = [doc.page_content for doc in documents]
        metadatas = [doc.metadata for doc in documents]
        return cls.from_texts(
            name=name,
            api_key=api_key,
            texts=texts,
            embedding=embedding,
            metadatas=metadatas,
            ids=ids,
            description=description,
            is_public=is_public,
            reset_project_if_exists=reset_project_if_exists,
            index_kwargs=index_kwargs,
        )