File size: 4,744 Bytes
58d33f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""Interface for vector stores."""
from __future__ import annotations

from abc import ABC, abstractmethod
from typing import Any, Iterable, List, Optional

from pydantic import BaseModel, Field

from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.schema import BaseRetriever


class VectorStore(ABC):
    """Interface for vector stores."""

    @abstractmethod
    def add_texts(
        self,
        texts: Iterable[str],
        metadatas: Optional[List[dict]] = None,
        **kwargs: Any,
    ) -> List[str]:
        """Run more texts through the embeddings and add to the vectorstore.

        Args:
            texts: Iterable of strings to add to the vectorstore.
            metadatas: Optional list of metadatas associated with the texts.
            kwargs: vectorstore specific parameters

        Returns:
            List of ids from adding the texts into the vectorstore.
        """

    def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]:
        """Run more documents through the embeddings and add to the vectorstore.

        Args:
            documents (List[Document]: Documents to add to the vectorstore.


        Returns:
            List[str]: List of IDs of the added texts.
        """
        # TODO: Handle the case where the user doesn't provide ids on the Collection
        texts = [doc.page_content for doc in documents]
        metadatas = [doc.metadata for doc in documents]
        return self.add_texts(texts, metadatas, **kwargs)

    @abstractmethod
    def similarity_search(
        self, query: str, k: int = 4, **kwargs: Any
    ) -> List[Document]:
        """Return docs most similar to query."""

    def similarity_search_by_vector(
        self, embedding: List[float], k: int = 4, **kwargs: Any
    ) -> List[Document]:
        """Return docs most similar to embedding vector.

        Args:
            embedding: Embedding to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.

        Returns:
            List of Documents most similar to the query vector.
        """
        raise NotImplementedError

    def max_marginal_relevance_search(
        self, query: str, k: int = 4, fetch_k: int = 20
    ) -> List[Document]:
        """Return docs selected using the maximal marginal relevance.

        Maximal marginal relevance optimizes for similarity to query AND diversity
        among selected documents.

        Args:
            query: Text to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            fetch_k: Number of Documents to fetch to pass to MMR algorithm.

        Returns:
            List of Documents selected by maximal marginal relevance.
        """
        raise NotImplementedError

    def max_marginal_relevance_search_by_vector(
        self, embedding: List[float], k: int = 4, fetch_k: int = 20
    ) -> List[Document]:
        """Return docs selected using the maximal marginal relevance.

        Maximal marginal relevance optimizes for similarity to query AND diversity
        among selected documents.

        Args:
            embedding: Embedding to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            fetch_k: Number of Documents to fetch to pass to MMR algorithm.

        Returns:
            List of Documents selected by maximal marginal relevance.
        """
        raise NotImplementedError

    @classmethod
    def from_documents(
        cls,
        documents: List[Document],
        embedding: Embeddings,
        **kwargs: Any,
    ) -> VectorStore:
        """Return VectorStore initialized from documents and embeddings."""
        texts = [d.page_content for d in documents]
        metadatas = [d.metadata for d in documents]
        return cls.from_texts(texts, embedding, metadatas=metadatas, **kwargs)

    @classmethod
    @abstractmethod
    def from_texts(
        cls,
        texts: List[str],
        embedding: Embeddings,
        metadatas: Optional[List[dict]] = None,
        **kwargs: Any,
    ) -> VectorStore:
        """Return VectorStore initialized from texts and embeddings."""

    def as_retriever(self) -> VectorStoreRetriever:
        return VectorStoreRetriever(vectorstore=self)


class VectorStoreRetriever(BaseRetriever, BaseModel):
    vectorstore: VectorStore
    search_kwargs: dict = Field(default_factory=dict)

    class Config:
        """Configuration for this pydantic object."""

        arbitrary_types_allowed = True

    def get_relevant_texts(self, query: str) -> List[Document]:
        return self.vectorstore.similarity_search(query, **self.search_kwargs)