File size: 14,103 Bytes
58d33f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
"""Wrapper around Qdrant vector database."""
import uuid
from operator import itemgetter
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union, cast

from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import VectorStore
from langchain.vectorstores.utils import maximal_marginal_relevance

MetadataFilter = Dict[str, Union[str, int, bool]]


class Qdrant(VectorStore):
    """Wrapper around Qdrant vector database.

    To use you should have the ``qdrant-client`` package installed.

    Example:
        .. code-block:: python

            from langchain import Qdrant

            client = QdrantClient()
            collection_name = "MyCollection"
            qdrant = Qdrant(client, collection_name, embedding_function)
    """

    CONTENT_KEY = "page_content"
    METADATA_KEY = "metadata"

    def __init__(
        self,
        client: Any,
        collection_name: str,
        embedding_function: Callable,
        content_payload_key: str = CONTENT_KEY,
        metadata_payload_key: str = METADATA_KEY,
    ):
        """Initialize with necessary components."""
        try:
            import qdrant_client
        except ImportError:
            raise ValueError(
                "Could not import qdrant-client python package. "
                "Please install it with `pip install qdrant-client`."
            )

        if not isinstance(client, qdrant_client.QdrantClient):
            raise ValueError(
                f"client should be an instance of qdrant_client.QdrantClient, "
                f"got {type(client)}"
            )

        self.client: qdrant_client.QdrantClient = client
        self.collection_name = collection_name
        self.embedding_function = embedding_function
        self.content_payload_key = content_payload_key or self.CONTENT_KEY
        self.metadata_payload_key = metadata_payload_key or self.METADATA_KEY

    def add_texts(
        self,
        texts: Iterable[str],
        metadatas: Optional[List[dict]] = None,
        **kwargs: Any,
    ) -> List[str]:
        """Run more texts through the embeddings and add to the vectorstore.

        Args:
            texts: Iterable of strings to add to the vectorstore.
            metadatas: Optional list of metadatas associated with the texts.

        Returns:
            List of ids from adding the texts into the vectorstore.
        """
        from qdrant_client.http import models as rest

        ids = [uuid.uuid4().hex for _ in texts]
        self.client.upsert(
            collection_name=self.collection_name,
            points=rest.Batch(
                ids=ids,
                vectors=[self.embedding_function(text) for text in texts],
                payloads=self._build_payloads(
                    texts,
                    metadatas,
                    self.content_payload_key,
                    self.metadata_payload_key,
                ),
            ),
        )

        return ids

    def similarity_search(
        self,
        query: str,
        k: int = 4,
        filter: Optional[MetadataFilter] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Return docs most similar to query.

        Args:
            query: Text to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            filter: Filter by metadata. Defaults to None.

        Returns:
            List of Documents most similar to the query.
        """
        results = self.similarity_search_with_score(query, k, filter)
        return list(map(itemgetter(0), results))

    def similarity_search_with_score(
        self, query: str, k: int = 4, filter: Optional[MetadataFilter] = None
    ) -> List[Tuple[Document, float]]:
        """Return docs most similar to query.

        Args:
            query: Text to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            filter: Filter by metadata. Defaults to None.

        Returns:
            List of Documents most similar to the query and score for each
        """
        embedding = self.embedding_function(query)
        results = self.client.search(
            collection_name=self.collection_name,
            query_vector=embedding,
            query_filter=self._qdrant_filter_from_dict(filter),
            with_payload=True,
            limit=k,
        )
        return [
            (
                self._document_from_scored_point(
                    result, self.content_payload_key, self.metadata_payload_key
                ),
                result.score,
            )
            for result in results
        ]

    def max_marginal_relevance_search(
        self, query: str, k: int = 4, fetch_k: int = 20
    ) -> List[Document]:
        """Return docs selected using the maximal marginal relevance.

        Maximal marginal relevance optimizes for similarity to query AND diversity
        among selected documents.

        Args:
            query: Text to look up documents similar to.
            k: Number of Documents to return. Defaults to 4.
            fetch_k: Number of Documents to fetch to pass to MMR algorithm.

        Returns:
            List of Documents selected by maximal marginal relevance.
        """
        embedding = self.embedding_function(query)
        results = self.client.search(
            collection_name=self.collection_name,
            query_vector=embedding,
            with_payload=True,
            with_vectors=True,
            limit=k,
        )
        embeddings = [result.vector for result in results]
        mmr_selected = maximal_marginal_relevance(embedding, embeddings, k=k)
        return [
            self._document_from_scored_point(
                results[i], self.content_payload_key, self.metadata_payload_key
            )
            for i in mmr_selected
        ]

    @classmethod
    def from_documents(
        cls,
        documents: List[Document],
        embedding: Embeddings,
        url: Optional[str] = None,
        port: Optional[int] = 6333,
        grpc_port: int = 6334,
        prefer_grpc: bool = False,
        https: Optional[bool] = None,
        api_key: Optional[str] = None,
        prefix: Optional[str] = None,
        timeout: Optional[float] = None,
        host: Optional[str] = None,
        collection_name: Optional[str] = None,
        distance_func: str = "Cosine",
        content_payload_key: str = CONTENT_KEY,
        metadata_payload_key: str = METADATA_KEY,
        **kwargs: Any,
    ) -> "Qdrant":
        return cast(
            Qdrant,
            super().from_documents(
                documents,
                embedding,
                url=url,
                port=port,
                grpc_port=grpc_port,
                prefer_grpc=prefer_grpc,
                https=https,
                api_key=api_key,
                prefix=prefix,
                timeout=timeout,
                host=host,
                collection_name=collection_name,
                distance_func=distance_func,
                content_payload_key=content_payload_key,
                metadata_payload_key=metadata_payload_key,
                **kwargs,
            ),
        )

    @classmethod
    def from_texts(
        cls,
        texts: List[str],
        embedding: Embeddings,
        metadatas: Optional[List[dict]] = None,
        url: Optional[str] = None,
        port: Optional[int] = 6333,
        grpc_port: int = 6334,
        prefer_grpc: bool = False,
        https: Optional[bool] = None,
        api_key: Optional[str] = None,
        prefix: Optional[str] = None,
        timeout: Optional[float] = None,
        host: Optional[str] = None,
        collection_name: Optional[str] = None,
        distance_func: str = "Cosine",
        content_payload_key: str = CONTENT_KEY,
        metadata_payload_key: str = METADATA_KEY,
        **kwargs: Any,
    ) -> "Qdrant":
        """Construct Qdrant wrapper from raw documents.

        Args:
            texts: A list of texts to be indexed in Qdrant.
            embedding: A subclass of `Embeddings`, responsible for text vectorization.
            metadatas:
                An optional list of metadata. If provided it has to be of the same
                length as a list of texts.
            url: either host or str of "Optional[scheme], host, Optional[port],
                Optional[prefix]". Default: `None`
            port: Port of the REST API interface. Default: 6333
            grpc_port: Port of the gRPC interface. Default: 6334
            prefer_grpc:
                If `true` - use gPRC interface whenever possible in custom methods.
            https: If `true` - use HTTPS(SSL) protocol. Default: `None`
            api_key: API key for authentication in Qdrant Cloud. Default: `None`
            prefix:
                If not `None` - add `prefix` to the REST URL path.
                Example: `service/v1` will result in
                    `http://localhost:6333/service/v1/{qdrant-endpoint}` for REST API.
                Default: `None`
            timeout:
                Timeout for REST and gRPC API requests.
                Default: 5.0 seconds for REST and unlimited for gRPC
            host:
                Host name of Qdrant service. If url and host are None, set to
                'localhost'. Default: `None`
            collection_name:
                Name of the Qdrant collection to be used. If not provided,
                will be created randomly.
            distance_func:
                Distance function. One of the: "Cosine" / "Euclid" / "Dot".
            content_payload_key:
                A payload key used to store the content of the document.
            metadata_payload_key:
                A payload key used to store the metadata of the document.
            **kwargs:
                Additional arguments passed directly into REST client initialization

        This is a user friendly interface that:
            1. Embeds documents.
            2. Creates an in memory docstore
            3. Initializes the Qdrant database

        This is intended to be a quick way to get started.

        Example:
            .. code-block:: python

                from langchain import Qdrant
                from langchain.embeddings import OpenAIEmbeddings
                embeddings = OpenAIEmbeddings()
                qdrant = Qdrant.from_texts(texts, embeddings, "localhost")
        """
        try:
            import qdrant_client
        except ImportError:
            raise ValueError(
                "Could not import qdrant-client python package. "
                "Please install it with `pip install qdrant-client`."
            )

        from qdrant_client.http import models as rest

        # Just do a single quick embedding to get vector size
        partial_embeddings = embedding.embed_documents(texts[:1])
        vector_size = len(partial_embeddings[0])

        collection_name = collection_name or uuid.uuid4().hex
        distance_func = distance_func.upper()

        client = qdrant_client.QdrantClient(
            url=url,
            port=port,
            grpc_port=grpc_port,
            prefer_grpc=prefer_grpc,
            https=https,
            api_key=api_key,
            prefix=prefix,
            timeout=timeout,
            host=host,
            **kwargs,
        )

        client.recreate_collection(
            collection_name=collection_name,
            vectors_config=rest.VectorParams(
                size=vector_size,
                distance=rest.Distance[distance_func],
            ),
        )

        # Now generate the embeddings for all the texts
        embeddings = embedding.embed_documents(texts)

        client.upsert(
            collection_name=collection_name,
            points=rest.Batch(
                ids=[uuid.uuid4().hex for _ in texts],
                vectors=embeddings,
                payloads=cls._build_payloads(
                    texts, metadatas, content_payload_key, metadata_payload_key
                ),
            ),
        )

        return cls(
            client=client,
            collection_name=collection_name,
            embedding_function=embedding.embed_query,
            content_payload_key=content_payload_key,
            metadata_payload_key=metadata_payload_key,
        )

    @classmethod
    def _build_payloads(
        cls,
        texts: Iterable[str],
        metadatas: Optional[List[dict]],
        content_payload_key: str,
        metadata_payload_key: str,
    ) -> List[dict]:
        payloads = []
        for i, text in enumerate(texts):
            if text is None:
                raise ValueError(
                    "At least one of the texts is None. Please remove it before "
                    "calling .from_texts or .add_texts on Qdrant instance."
                )
            metadata = metadatas[i] if metadatas is not None else None
            payloads.append(
                {
                    content_payload_key: text,
                    metadata_payload_key: metadata,
                }
            )

        return payloads

    @classmethod
    def _document_from_scored_point(
        cls,
        scored_point: Any,
        content_payload_key: str,
        metadata_payload_key: str,
    ) -> Document:
        return Document(
            page_content=scored_point.payload.get(content_payload_key),
            metadata=scored_point.payload.get(metadata_payload_key) or {},
        )

    def _qdrant_filter_from_dict(self, filter: Optional[MetadataFilter]) -> Any:
        if filter is None or 0 == len(filter):
            return None

        from qdrant_client.http import models as rest

        return rest.Filter(
            must=[
                rest.FieldCondition(
                    key=f"{self.metadata_payload_key}.{key}",
                    match=rest.MatchValue(value=value),
                )
                for key, value in filter.items()
            ]
        )