File size: 10,302 Bytes
58d33f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
"""Wrapper around Redis vector database."""
from __future__ import annotations

import json
import logging
import uuid
from typing import Any, Callable, Iterable, List, Mapping, Optional

import numpy as np
from redis.client import Redis as RedisType

from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
from langchain.vectorstores.base import VectorStore

logger = logging.getLogger()


def _check_redis_module_exist(client: RedisType, module: str) -> bool:
    return module in [m["name"] for m in client.info().get("modules", {"name": ""})]


class Redis(VectorStore):
    def __init__(
        self,
        redis_url: str,
        index_name: str,
        embedding_function: Callable,
        **kwargs: Any,
    ):
        """Initialize with necessary components."""
        try:
            import redis
        except ImportError:
            raise ValueError(
                "Could not import redis python package. "
                "Please install it with `pip install redis`."
            )

        self.embedding_function = embedding_function
        self.index_name = index_name
        try:
            redis_client = redis.from_url(redis_url, **kwargs)
        except ValueError as e:
            raise ValueError(f"Your redis connected error: {e}")

        # check if redis add redisearch module
        if not _check_redis_module_exist(redis_client, "search"):
            raise ValueError(
                "Could not use redis directly, you need to add search module"
                "Please refer [RediSearch](https://redis.io/docs/stack/search/quick_start/)"  # noqa
            )

        self.client = redis_client

    def add_texts(
        self,
        texts: Iterable[str],
        metadatas: Optional[List[dict]] = None,
        **kwargs: Any,
    ) -> List[str]:
        # `prefix`: Maybe in the future we can let the user choose the index_name.
        prefix = "doc"  # prefix for the document keys

        ids = []
        # Check if index exists
        for i, text in enumerate(texts):
            key = f"{prefix}:{uuid.uuid4().hex}"
            metadata = metadatas[i] if metadatas else {}
            self.client.hset(
                key,
                mapping={
                    "content": text,
                    "content_vector": np.array(
                        self.embedding_function(text), dtype=np.float32
                    ).tobytes(),
                    "metadata": json.dumps(metadata),
                },
            )
            ids.append(key)
        return ids

    def similarity_search(
        self, query: str, k: int = 4, **kwargs: Any
    ) -> List[Document]:
        try:
            from redis.commands.search.query import Query
        except ImportError:
            raise ValueError(
                "Could not import redis python package. "
                "Please install it with `pip install redis`."
            )

        # Creates embedding vector from user query
        embedding = self.embedding_function(query)

        # Prepare the Query
        return_fields = ["metadata", "content", "vector_score"]
        vector_field = "content_vector"
        hybrid_fields = "*"
        base_query = (
            f"{hybrid_fields}=>[KNN {k} @{vector_field} $vector AS vector_score]"
        )
        redis_query = (
            Query(base_query)
            .return_fields(*return_fields)
            .sort_by("vector_score")
            .paging(0, k)
            .dialect(2)
        )
        params_dict: Mapping[str, str] = {
            "vector": np.array(embedding)  # type: ignore
            .astype(dtype=np.float32)
            .tobytes()
        }

        # perform vector search
        results = self.client.ft(self.index_name).search(redis_query, params_dict)

        documents = [
            Document(page_content=result.content, metadata=json.loads(result.metadata))
            for result in results.docs
        ]

        return documents

    @classmethod
    def from_texts(
        cls,
        texts: List[str],
        embedding: Embeddings,
        metadatas: Optional[List[dict]] = None,
        index_name: Optional[str] = None,
        **kwargs: Any,
    ) -> Redis:
        """Construct RediSearch wrapper from raw documents.
        This is a user-friendly interface that:
            1. Embeds documents.
            2. Creates a new index for the embeddings in the RediSearch instance.
            3. Adds the documents to the newly created RediSearch index.
        This is intended to be a quick way to get started.
        Example:
            .. code-block:: python
                from langchain import RediSearch
                from langchain.embeddings import OpenAIEmbeddings
                embeddings = OpenAIEmbeddings()
                redisearch = RediSearch.from_texts(
                    texts,
                    embeddings,
                    redis_url="redis://username:password@localhost:6379"
                )
        """
        redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
        try:
            import redis
            from redis.commands.search.field import TextField, VectorField
            from redis.commands.search.indexDefinition import IndexDefinition, IndexType
        except ImportError:
            raise ValueError(
                "Could not import redis python package. "
                "Please install it with `pip install redis`."
            )
        try:
            # We need to first remove redis_url from kwargs,
            # otherwise passing it to Redis will result in an error.
            kwargs.pop("redis_url")
            client = redis.from_url(url=redis_url, **kwargs)
        except ValueError as e:
            raise ValueError(f"Your redis connected error: {e}")

        # check if redis add redisearch module
        if not _check_redis_module_exist(client, "search"):
            raise ValueError(
                "Could not use redis directly, you need to add search module"
                "Please refer [RediSearch](https://redis.io/docs/stack/search/quick_start/)"  # noqa
            )

        embeddings = embedding.embed_documents(texts)
        dim = len(embeddings[0])
        # Constants
        vector_number = len(embeddings)  # initial number of vectors
        # name of the search index if not given
        if not index_name:
            index_name = uuid.uuid4().hex
        prefix = f"doc:{index_name}"  # prefix for the document keys
        distance_metric = (
            "COSINE"  # distance metric for the vectors (ex. COSINE, IP, L2)
        )
        content = TextField(name="content")
        metadata = TextField(name="metadata")
        content_embedding = VectorField(
            "content_vector",
            "FLAT",
            {
                "TYPE": "FLOAT32",
                "DIM": dim,
                "DISTANCE_METRIC": distance_metric,
                "INITIAL_CAP": vector_number,
            },
        )
        fields = [content, metadata, content_embedding]

        # Check if index exists
        try:
            client.ft(index_name).info()
            logger.info("Index already exists")
        except:  # noqa
            # Create Redis Index
            client.ft(index_name).create_index(
                fields=fields,
                definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH),
            )

        pipeline = client.pipeline()
        for i, text in enumerate(texts):
            key = f"{prefix}:{i}"
            metadata = metadatas[i] if metadatas else {}
            pipeline.hset(
                key,
                mapping={
                    "content": text,
                    "content_vector": np.array(
                        embeddings[i], dtype=np.float32
                    ).tobytes(),
                    "metadata": json.dumps(metadata),
                },
            )
        pipeline.execute()
        return cls(redis_url, index_name, embedding.embed_query)

    @staticmethod
    def drop_index(
        index_name: str,
        delete_documents: bool,
        **kwargs: Any,
    ) -> bool:
        redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
        try:
            import redis
        except ImportError:
            raise ValueError(
                "Could not import redis python package. "
                "Please install it with `pip install redis`."
            )
        try:
            # We need to first remove redis_url from kwargs,
            # otherwise passing it to Redis will result in an error.
            kwargs.pop("redis_url")
            client = redis.from_url(url=redis_url, **kwargs)
        except ValueError as e:
            raise ValueError(f"Your redis connected error: {e}")
        # Check if index exists
        try:
            client.ft(index_name).dropindex(delete_documents)
            logger.info("Drop index")
            return True
        except:  # noqa
            # Index not exist
            return False

    @classmethod
    def from_existing_index(
        cls,
        embedding: Embeddings,
        index_name: str,
        **kwargs: Any,
    ) -> Redis:
        redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
        try:
            import redis
        except ImportError:
            raise ValueError(
                "Could not import redis python package. "
                "Please install it with `pip install redis`."
            )
        try:
            # We need to first remove redis_url from kwargs,
            # otherwise passing it to Redis will result in an error.
            kwargs.pop("redis_url")
            client = redis.from_url(url=redis_url, **kwargs)
        except ValueError as e:
            raise ValueError(f"Your redis connected error: {e}")

        # check if redis add redisearch module
        if not _check_redis_module_exist(client, "search"):
            raise ValueError(
                "Could not use redis directly, you need to add search module"
                "Please refer [RediSearch](https://redis.io/docs/stack/search/quick_start/)"  # noqa
            )

        return cls(redis_url, index_name, embedding.embed_query)