Spaces:
Runtime error
Runtime error
from typing import Any, Dict, List, Type | |
from pydantic import BaseModel, root_validator | |
from langchain.chains.llm import LLMChain | |
from langchain.memory.chat_memory import BaseChatMemory | |
from langchain.memory.prompt import SUMMARY_PROMPT | |
from langchain.prompts.base import BasePromptTemplate | |
from langchain.schema import ( | |
BaseLanguageModel, | |
BaseMessage, | |
SystemMessage, | |
get_buffer_string, | |
) | |
class SummarizerMixin(BaseModel): | |
human_prefix: str = "Human" | |
ai_prefix: str = "AI" | |
llm: BaseLanguageModel | |
prompt: BasePromptTemplate = SUMMARY_PROMPT | |
summary_message_cls: Type[BaseMessage] = SystemMessage | |
def predict_new_summary( | |
self, messages: List[BaseMessage], existing_summary: str | |
) -> str: | |
new_lines = get_buffer_string( | |
messages, | |
human_prefix=self.human_prefix, | |
ai_prefix=self.ai_prefix, | |
) | |
chain = LLMChain(llm=self.llm, prompt=self.prompt) | |
return chain.predict(summary=existing_summary, new_lines=new_lines) | |
class ConversationSummaryMemory(BaseChatMemory, SummarizerMixin, BaseModel): | |
"""Conversation summarizer to memory.""" | |
buffer: str = "" | |
memory_key: str = "history" #: :meta private: | |
def memory_variables(self) -> List[str]: | |
"""Will always return list of memory variables. | |
:meta private: | |
""" | |
return [self.memory_key] | |
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |
"""Return history buffer.""" | |
if self.return_messages: | |
buffer: Any = [self.summary_message_cls(content=self.buffer)] | |
else: | |
buffer = self.buffer | |
return {self.memory_key: buffer} | |
def validate_prompt_input_variables(cls, values: Dict) -> Dict: | |
"""Validate that prompt input variables are consistent.""" | |
prompt_variables = values["prompt"].input_variables | |
expected_keys = {"summary", "new_lines"} | |
if expected_keys != set(prompt_variables): | |
raise ValueError( | |
"Got unexpected prompt input variables. The prompt expects " | |
f"{prompt_variables}, but it should have {expected_keys}." | |
) | |
return values | |
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: | |
"""Save context from this conversation to buffer.""" | |
super().save_context(inputs, outputs) | |
self.buffer = self.predict_new_summary( | |
self.chat_memory.messages[-2:], self.buffer | |
) | |
def clear(self) -> None: | |
"""Clear memory contents.""" | |
super().clear() | |
self.buffer = "" | |