Spaces:
Runtime error
Runtime error
"""Wrapper around ChromaDB embeddings platform.""" | |
from __future__ import annotations | |
import logging | |
import uuid | |
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple | |
from langchain.docstore.document import Document | |
from langchain.embeddings.base import Embeddings | |
from langchain.vectorstores.base import VectorStore | |
if TYPE_CHECKING: | |
import chromadb | |
import chromadb.config | |
logger = logging.getLogger() | |
def _results_to_docs(results: Any) -> List[Document]: | |
return [doc for doc, _ in _results_to_docs_and_scores(results)] | |
def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]: | |
return [ | |
# TODO: Chroma can do batch querying, | |
# we shouldn't hard code to the 1st result | |
(Document(page_content=result[0], metadata=result[1] or {}), result[2]) | |
for result in zip( | |
results["documents"][0], | |
results["metadatas"][0], | |
results["distances"][0], | |
) | |
] | |
class Chroma(VectorStore): | |
"""Wrapper around ChromaDB embeddings platform. | |
To use, you should have the ``chromadb`` python package installed. | |
Example: | |
.. code-block:: python | |
from langchain.vectorstores import Chroma | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
embeddings = OpenAIEmbeddings() | |
vectorstore = Chroma("langchain_store", embeddings.embed_query) | |
""" | |
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain" | |
def __init__( | |
self, | |
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, | |
embedding_function: Optional[Embeddings] = None, | |
persist_directory: Optional[str] = None, | |
client_settings: Optional[chromadb.config.Settings] = None, | |
) -> None: | |
"""Initialize with Chroma client.""" | |
try: | |
import chromadb | |
import chromadb.config | |
except ImportError: | |
raise ValueError( | |
"Could not import chromadb python package. " | |
"Please install it with `pip install chromadb`." | |
) | |
if client_settings: | |
self._client_settings = client_settings | |
else: | |
self._client_settings = chromadb.config.Settings() | |
if persist_directory is not None: | |
self._client_settings = chromadb.config.Settings( | |
chroma_db_impl="duckdb+parquet", persist_directory=persist_directory | |
) | |
self._client = chromadb.Client(self._client_settings) | |
self._embedding_function = embedding_function | |
self._persist_directory = persist_directory | |
self._collection = self._client.get_or_create_collection( | |
name=collection_name, | |
embedding_function=self._embedding_function.embed_documents | |
if self._embedding_function is not None | |
else None, | |
) | |
def add_texts( | |
self, | |
texts: Iterable[str], | |
metadatas: Optional[List[dict]] = None, | |
ids: Optional[List[str]] = None, | |
**kwargs: Any, | |
) -> List[str]: | |
"""Run more texts through the embeddings and add to the vectorstore. | |
Args: | |
texts (Iterable[str]): Texts to add to the vectorstore. | |
metadatas (Optional[List[dict]], optional): Optional list of metadatas. | |
ids (Optional[List[str]], optional): Optional list of IDs. | |
Returns: | |
List[str]: List of IDs of the added texts. | |
""" | |
# TODO: Handle the case where the user doesn't provide ids on the Collection | |
if ids is None: | |
ids = [str(uuid.uuid1()) for _ in texts] | |
embeddings = None | |
if self._embedding_function is not None: | |
embeddings = self._embedding_function.embed_documents(list(texts)) | |
self._collection.add( | |
metadatas=metadatas, embeddings=embeddings, documents=texts, ids=ids | |
) | |
return ids | |
def similarity_search( | |
self, | |
query: str, | |
k: int = 4, | |
filter: Optional[Dict[str, str]] = None, | |
**kwargs: Any, | |
) -> List[Document]: | |
"""Run similarity search with Chroma. | |
Args: | |
query (str): Query text to search for. | |
k (int): Number of results to return. Defaults to 4. | |
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. | |
Returns: | |
List[Document]: List of documents most simmilar to the query text. | |
""" | |
docs_and_scores = self.similarity_search_with_score(query, k, where=filter) | |
return [doc for doc, _ in docs_and_scores] | |
def similarity_search_by_vector( | |
self, | |
embedding: List[float], | |
k: int = 4, | |
filter: Optional[Dict[str, str]] = None, | |
**kwargs: Any, | |
) -> List[Document]: | |
"""Return docs most similar to embedding vector. | |
Args: | |
embedding: Embedding to look up documents similar to. | |
k: Number of Documents to return. Defaults to 4. | |
Returns: | |
List of Documents most similar to the query vector. | |
""" | |
results = self._collection.query( | |
query_embeddings=embedding, n_results=k, where=filter | |
) | |
return _results_to_docs(results) | |
def similarity_search_with_score( | |
self, | |
query: str, | |
k: int = 4, | |
filter: Optional[Dict[str, str]] = None, | |
**kwargs: Any, | |
) -> List[Tuple[Document, float]]: | |
"""Run similarity search with Chroma with distance. | |
Args: | |
query (str): Query text to search for. | |
k (int): Number of results to return. Defaults to 4. | |
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None. | |
Returns: | |
List[Tuple[Document, float]]: List of documents most similar to the query | |
text with distance in float. | |
""" | |
if self._embedding_function is None: | |
results = self._collection.query( | |
query_texts=[query], n_results=k, where=filter | |
) | |
else: | |
query_embedding = self._embedding_function.embed_query(query) | |
results = self._collection.query( | |
query_embeddings=[query_embedding], n_results=k, where=filter | |
) | |
return _results_to_docs_and_scores(results) | |
def delete_collection(self) -> None: | |
"""Delete the collection.""" | |
self._client.delete_collection(self._collection.name) | |
def persist(self) -> None: | |
"""Persist the collection. | |
This can be used to explicitly persist the data to disk. | |
It will also be called automatically when the object is destroyed. | |
""" | |
if self._persist_directory is None: | |
raise ValueError( | |
"You must specify a persist_directory on" | |
"creation to persist the collection." | |
) | |
self._client.persist() | |
def from_texts( | |
cls, | |
texts: List[str], | |
embedding: Optional[Embeddings] = None, | |
metadatas: Optional[List[dict]] = None, | |
ids: Optional[List[str]] = None, | |
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, | |
persist_directory: Optional[str] = None, | |
client_settings: Optional[chromadb.config.Settings] = None, | |
**kwargs: Any, | |
) -> Chroma: | |
"""Create a Chroma vectorstore from a raw documents. | |
If a persist_directory is specified, the collection will be persisted there. | |
Otherwise, the data will be ephemeral in-memory. | |
Args: | |
texts (List[str]): List of texts to add to the collection. | |
collection_name (str): Name of the collection to create. | |
persist_directory (Optional[str]): Directory to persist the collection. | |
embedding (Optional[Embeddings]): Embedding function. Defaults to None. | |
metadatas (Optional[List[dict]]): List of metadatas. Defaults to None. | |
ids (Optional[List[str]]): List of document IDs. Defaults to None. | |
client_settings (Optional[chromadb.config.Settings]): Chroma client settings | |
Returns: | |
Chroma: Chroma vectorstore. | |
""" | |
chroma_collection = cls( | |
collection_name=collection_name, | |
embedding_function=embedding, | |
persist_directory=persist_directory, | |
client_settings=client_settings, | |
) | |
chroma_collection.add_texts(texts=texts, metadatas=metadatas, ids=ids) | |
return chroma_collection | |
def from_documents( | |
cls, | |
documents: List[Document], | |
embedding: Optional[Embeddings] = None, | |
ids: Optional[List[str]] = None, | |
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME, | |
persist_directory: Optional[str] = None, | |
client_settings: Optional[chromadb.config.Settings] = None, | |
**kwargs: Any, | |
) -> Chroma: | |
"""Create a Chroma vectorstore from a list of documents. | |
If a persist_directory is specified, the collection will be persisted there. | |
Otherwise, the data will be ephemeral in-memory. | |
Args: | |
collection_name (str): Name of the collection to create. | |
persist_directory (Optional[str]): Directory to persist the collection. | |
ids (Optional[List[str]]): List of document IDs. Defaults to None. | |
documents (List[Document]): List of documents to add to the vectorstore. | |
embedding (Optional[Embeddings]): Embedding function. Defaults to None. | |
client_settings (Optional[chromadb.config.Settings]): Chroma client settings | |
Returns: | |
Chroma: Chroma vectorstore. | |
""" | |
texts = [doc.page_content for doc in documents] | |
metadatas = [doc.metadata for doc in documents] | |
return cls.from_texts( | |
texts=texts, | |
embedding=embedding, | |
metadatas=metadatas, | |
ids=ids, | |
collection_name=collection_name, | |
persist_directory=persist_directory, | |
client_settings=client_settings, | |
) | |