"""Wrapper around Redis vector database.""" from __future__ import annotations import json import logging import uuid from typing import Any, Callable, Iterable, List, Mapping, Optional import numpy as np from redis.client import Redis as RedisType from langchain.docstore.document import Document from langchain.embeddings.base import Embeddings from langchain.utils import get_from_dict_or_env from langchain.vectorstores.base import VectorStore logger = logging.getLogger() def _check_redis_module_exist(client: RedisType, module: str) -> bool: return module in [m["name"] for m in client.info().get("modules", {"name": ""})] class Redis(VectorStore): def __init__( self, redis_url: str, index_name: str, embedding_function: Callable, **kwargs: Any, ): """Initialize with necessary components.""" try: import redis except ImportError: raise ValueError( "Could not import redis python package. " "Please install it with `pip install redis`." ) self.embedding_function = embedding_function self.index_name = index_name try: redis_client = redis.from_url(redis_url, **kwargs) except ValueError as e: raise ValueError(f"Your redis connected error: {e}") # check if redis add redisearch module if not _check_redis_module_exist(redis_client, "search"): raise ValueError( "Could not use redis directly, you need to add search module" "Please refer [RediSearch](https://redis.io/docs/stack/search/quick_start/)" # noqa ) self.client = redis_client def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: # `prefix`: Maybe in the future we can let the user choose the index_name. prefix = "doc" # prefix for the document keys ids = [] # Check if index exists for i, text in enumerate(texts): key = f"{prefix}:{uuid.uuid4().hex}" metadata = metadatas[i] if metadatas else {} self.client.hset( key, mapping={ "content": text, "content_vector": np.array( self.embedding_function(text), dtype=np.float32 ).tobytes(), "metadata": json.dumps(metadata), }, ) ids.append(key) return ids def similarity_search( self, query: str, k: int = 4, **kwargs: Any ) -> List[Document]: try: from redis.commands.search.query import Query except ImportError: raise ValueError( "Could not import redis python package. " "Please install it with `pip install redis`." ) # Creates embedding vector from user query embedding = self.embedding_function(query) # Prepare the Query return_fields = ["metadata", "content", "vector_score"] vector_field = "content_vector" hybrid_fields = "*" base_query = ( f"{hybrid_fields}=>[KNN {k} @{vector_field} $vector AS vector_score]" ) redis_query = ( Query(base_query) .return_fields(*return_fields) .sort_by("vector_score") .paging(0, k) .dialect(2) ) params_dict: Mapping[str, str] = { "vector": np.array(embedding) # type: ignore .astype(dtype=np.float32) .tobytes() } # perform vector search results = self.client.ft(self.index_name).search(redis_query, params_dict) documents = [ Document(page_content=result.content, metadata=json.loads(result.metadata)) for result in results.docs ] return documents @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, index_name: Optional[str] = None, **kwargs: Any, ) -> Redis: """Construct RediSearch wrapper from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Creates a new index for the embeddings in the RediSearch instance. 3. Adds the documents to the newly created RediSearch index. This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import RediSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() redisearch = RediSearch.from_texts( texts, embeddings, redis_url="redis://username:password@localhost:6379" ) """ redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL") try: import redis from redis.commands.search.field import TextField, VectorField from redis.commands.search.indexDefinition import IndexDefinition, IndexType except ImportError: raise ValueError( "Could not import redis python package. " "Please install it with `pip install redis`." ) try: # We need to first remove redis_url from kwargs, # otherwise passing it to Redis will result in an error. kwargs.pop("redis_url") client = redis.from_url(url=redis_url, **kwargs) except ValueError as e: raise ValueError(f"Your redis connected error: {e}") # check if redis add redisearch module if not _check_redis_module_exist(client, "search"): raise ValueError( "Could not use redis directly, you need to add search module" "Please refer [RediSearch](https://redis.io/docs/stack/search/quick_start/)" # noqa ) embeddings = embedding.embed_documents(texts) dim = len(embeddings[0]) # Constants vector_number = len(embeddings) # initial number of vectors # name of the search index if not given if not index_name: index_name = uuid.uuid4().hex prefix = f"doc:{index_name}" # prefix for the document keys distance_metric = ( "COSINE" # distance metric for the vectors (ex. COSINE, IP, L2) ) content = TextField(name="content") metadata = TextField(name="metadata") content_embedding = VectorField( "content_vector", "FLAT", { "TYPE": "FLOAT32", "DIM": dim, "DISTANCE_METRIC": distance_metric, "INITIAL_CAP": vector_number, }, ) fields = [content, metadata, content_embedding] # Check if index exists try: client.ft(index_name).info() logger.info("Index already exists") except: # noqa # Create Redis Index client.ft(index_name).create_index( fields=fields, definition=IndexDefinition(prefix=[prefix], index_type=IndexType.HASH), ) pipeline = client.pipeline() for i, text in enumerate(texts): key = f"{prefix}:{i}" metadata = metadatas[i] if metadatas else {} pipeline.hset( key, mapping={ "content": text, "content_vector": np.array( embeddings[i], dtype=np.float32 ).tobytes(), "metadata": json.dumps(metadata), }, ) pipeline.execute() return cls(redis_url, index_name, embedding.embed_query) @staticmethod def drop_index( index_name: str, delete_documents: bool, **kwargs: Any, ) -> bool: redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL") try: import redis except ImportError: raise ValueError( "Could not import redis python package. " "Please install it with `pip install redis`." ) try: # We need to first remove redis_url from kwargs, # otherwise passing it to Redis will result in an error. kwargs.pop("redis_url") client = redis.from_url(url=redis_url, **kwargs) except ValueError as e: raise ValueError(f"Your redis connected error: {e}") # Check if index exists try: client.ft(index_name).dropindex(delete_documents) logger.info("Drop index") return True except: # noqa # Index not exist return False @classmethod def from_existing_index( cls, embedding: Embeddings, index_name: str, **kwargs: Any, ) -> Redis: redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL") try: import redis except ImportError: raise ValueError( "Could not import redis python package. " "Please install it with `pip install redis`." ) try: # We need to first remove redis_url from kwargs, # otherwise passing it to Redis will result in an error. kwargs.pop("redis_url") client = redis.from_url(url=redis_url, **kwargs) except ValueError as e: raise ValueError(f"Your redis connected error: {e}") # check if redis add redisearch module if not _check_redis_module_exist(client, "search"): raise ValueError( "Could not use redis directly, you need to add search module" "Please refer [RediSearch](https://redis.io/docs/stack/search/quick_start/)" # noqa ) return cls(redis_url, index_name, embedding.embed_query)