File size: 1,314 Bytes
ca35c2d
 
 
 
 
98b4908
ca35c2d
 
 
 
 
 
 
 
 
 
 
 
a6b3c0d
ca35c2d
 
fbe79fa
ca35c2d
 
 
 
 
 
 
 
 
 
 
fa6cbc3
d51dee5
ca35c2d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
from PIL import Image

REPO_ID = "jgba/kart_plates"
FILENAME = "best.pt"

yolov5_weights = hf_hub_download(repo_id=REPO_ID, filename=FILENAME)

model = torch.hub.load('ultralytics/yolov5', 'custom', path=yolov5_weights, force_reload=True)  # local repo

def object_detection(im, size=640):
    results = model(im)  # inference
    #results.print()  # print results to screen
    #results.show()  # display results
    #results.save()  # save as results1.jpg, results2.jpg... etc.
    results.render()  # updates results.imgs with boxes and labels
    return Image.fromarray(results.ims[0])

title = "Kart Plates Localizer"
description = """This model is a small demo based in a 305 images analysis from kart plates around a fun race. For best results, more examples are necessary.
"""

image = gr.inputs.Image(shape=(640, 640), image_mode="RGB", source="upload", label="Imagem", optional=False)
outputs = gr.outputs.Image(type="pil", label="Output Image")

gr.Interface(
    fn=object_detection,
    inputs=image,
    outputs=outputs,
    title=title,
    description=description,
    examples=[["sample_images/04603.jpg"], ["sample_images/04679.jpg"], 
              ["sample_images/04081.jpg"], ["sample_images/08338.jpg"]],
).launch()