Jori Geysen commited on
Commit
e56842a
·
1 Parent(s): 79cf0f9

add Dockerfile, app.py and requirements.txt

Browse files
Files changed (3) hide show
  1. Dockerfile +20 -0
  2. app.py +242 -0
  3. requirements.txt +8 -0
Dockerfile ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+
3
+ RUN useradd -m -u 1000 user
4
+
5
+ USER user
6
+
7
+ ENV HOME=/home/user \
8
+ PATH=/home/user/.local/bin:$PATH
9
+
10
+ WORKDIR $HOME/app
11
+
12
+ COPY --chown=user . $HOME/app
13
+
14
+ COPY ./requirements.txt /app/requirements.txt
15
+
16
+ RUN pip install --no-cache-dir --upgrade -r /app/requirements.txt
17
+
18
+ COPY . .
19
+
20
+ CMD ["chainlit", "run", "app.py", "--port", "7860"]
app.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # chainlit import
2
+ import chainlit as cl
3
+
4
+ # External Libraries
5
+ import pandas as pd
6
+ from sqlalchemy import create_engine
7
+ from typing import List, Tuple, Any
8
+ from pydantic import BaseModel, Field
9
+
10
+ # llama_index Imports
11
+ import chromadb
12
+ from llama_index import (
13
+ ServiceContext,
14
+ SQLDatabase,
15
+ VectorStoreIndex,
16
+ )
17
+ from llama_index.agent import OpenAIAgent
18
+ from llama_index.callbacks.base import CallbackManager
19
+ from llama_index.embeddings.openai import OpenAIEmbedding
20
+ from llama_index.indices.struct_store.sql_query import NLSQLTableQueryEngine
21
+ from llama_index.langchain_helpers.text_splitter import TokenTextSplitter
22
+ from llama_index.llms import OpenAI
23
+ from llama_index.node_parser.simple import SimpleNodeParser
24
+ from llama_index.query_engine import RetrieverQueryEngine
25
+ from llama_index.readers.wikipedia import WikipediaReader
26
+ from llama_index.retrievers import VectorIndexRetriever
27
+ from llama_index.storage.storage_context import StorageContext
28
+ from llama_index.tools import FunctionTool
29
+ from llama_index.tools.query_engine import QueryEngineTool
30
+ from llama_index.vector_stores import ChromaVectorStore
31
+ from llama_index.vector_stores.types import (
32
+ VectorStoreInfo,
33
+ MetadataInfo,
34
+ ExactMatchFilter,
35
+ MetadataFilters,
36
+ )
37
+ import logging
38
+ import os
39
+ import openai
40
+ import json
41
+ import nest_asyncio
42
+
43
+ nest_asyncio.apply()
44
+
45
+ # Set up logging for debugging and monitoring
46
+ logging.basicConfig(level=logging.INFO)
47
+ logger = logging.getLogger(__name__)
48
+
49
+ openai.api_key = os.environ.get("OPENAI_API_KEY")
50
+
51
+ # try:
52
+ # # rebuild storage context
53
+ # storage_context = StorageContext.from_defaults(persist_dir="./storage")
54
+ # # load index
55
+ # index = load_index_from_storage(storage_context)
56
+ # except:
57
+ # from llama_index import GPTVectorStoreIndex, SimpleDirectoryReader
58
+
59
+ # documents = SimpleDirectoryReader("./data").load_data()
60
+ # index = GPTVectorStoreIndex.from_documents(documents)
61
+ # index.storage_context.persist()
62
+
63
+
64
+ @cl.on_chat_start
65
+ async def init():
66
+
67
+ #### Context Setting w/ `ServiceContext`
68
+
69
+ embed_model = OpenAIEmbedding()
70
+ chunk_size = 2048
71
+ llm = OpenAI(
72
+ temperature=0,
73
+ model="gpt-3.5-turbo",
74
+ streaming=True
75
+ )
76
+
77
+ service_context = ServiceContext.from_defaults(
78
+ llm=llm,
79
+ chunk_size=chunk_size,
80
+ embed_model=embed_model,
81
+ callback_manager=CallbackManager([cl.LlamaIndexCallbackHandler()]),
82
+ )
83
+
84
+ text_splitter = TokenTextSplitter(
85
+ chunk_size=chunk_size
86
+ )
87
+
88
+ node_parser = SimpleNodeParser(
89
+ text_splitter=text_splitter
90
+ )
91
+
92
+ # ### BarbenHeimer Wikipedia Retrieval Tool w/ `QueryEngine`!
93
+ # #### ChromaDB
94
+
95
+ chroma_client = chromadb.Client()
96
+ chroma_collection = chroma_client.get_or_create_collection("wikipedia_barbie_opp")
97
+
98
+ vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
99
+ storage_context = StorageContext.from_defaults(vector_store=vector_store)
100
+ wiki_vector_index = VectorStoreIndex([], storage_context=storage_context, service_context=service_context)
101
+
102
+ movie_list = ["Barbie (film)", "Oppenheimer (film)"]
103
+ wiki_docs = WikipediaReader().load_data(pages=movie_list, auto_suggest=False)
104
+
105
+ # #### Node Construction
106
+
107
+ for movie, wiki_doc in zip(movie_list, wiki_docs):
108
+ nodes = node_parser.get_nodes_from_documents([wiki_doc])
109
+ for node in nodes:
110
+ node.metadata = {"title" : movie}
111
+ wiki_vector_index.insert_nodes(nodes)
112
+
113
+ # #### Auto Retriever Functional Tool
114
+ # First, we need to create our `VectoreStoreInfo` object which will hold all the relevant metadata we need for each component (in this case title metadata).
115
+
116
+ top_k = 3
117
+
118
+ vector_store_info = VectorStoreInfo(
119
+ content_info="semantic information about movies",
120
+ metadata_info=[MetadataInfo(
121
+ name="title",
122
+ type="str",
123
+ description="title of the movie, one of [Barbie (film), Oppenheimer (film)]",
124
+ )]
125
+ )
126
+
127
+ # Now we'll create our base PyDantic object that we can use to ensure compatability with our application layer. This verifies that the response from the OpenAI endpoint conforms to this schema.
128
+ class AutoRetrieveModel(BaseModel):
129
+ query: str = Field(..., description="natural language query string")
130
+ filter_key_list: List[str] = Field(
131
+ ..., description="List of metadata filter field names"
132
+ )
133
+ filter_value_list: List[str] = Field(
134
+ ...,
135
+ description=(
136
+ "List of metadata filter field values (corresponding to names specified in filter_key_list)"
137
+ )
138
+ )
139
+
140
+ # Now we can build our function that we will use to query the functional endpoint.
141
+ # >The `docstring` is important to the functionality of the application.
142
+ def auto_retrieve_fn(
143
+ query: str, filter_key_list: List[str], filter_value_list: List[str]
144
+ ):
145
+ """Auto retrieval function.
146
+ Performs auto-retrieval from a vector database, and then applies a set of filters.
147
+ """
148
+ query = query or "Query"
149
+
150
+ exact_match_filters = [
151
+ ExactMatchFilter(key=k, value=v)
152
+ for k, v in zip(filter_key_list, filter_value_list)
153
+ ]
154
+ retriever = VectorIndexRetriever(
155
+ wiki_vector_index, filters=MetadataFilters(filters=exact_match_filters), top_k=top_k
156
+ )
157
+ query_engine = RetrieverQueryEngine.from_args(retriever)
158
+
159
+ response = query_engine.query(query)
160
+ return str(response)
161
+
162
+ # Now we need to wrap our system in a tool in order to integrate it into the larger application.
163
+ description = f"""\
164
+ Use this tool to look up semantic information about films.
165
+ The vector database schema is given below:
166
+ {vector_store_info.json()}
167
+ """
168
+
169
+ auto_retrieve_tool = FunctionTool.from_defaults(
170
+ fn=auto_retrieve_fn,
171
+ name="auto_retrieve_tool",
172
+ description=description,
173
+ fn_schema=AutoRetrieveModel,
174
+ )
175
+
176
+ # All that's left to do is attach the tool to an OpenAIAgent and let it rip!
177
+
178
+ # ### BarbenHeimer SQL Tool
179
+
180
+ barbie_df = pd.read_csv("barbie_data/barbie.csv")
181
+ oppenheimer_df = pd.read_csv("oppenheimer_data/oppenheimer.csv")
182
+
183
+ # #### Create SQLAlchemy engine with SQLite
184
+
185
+ engine = create_engine("sqlite+pysqlite:///:memory:")
186
+
187
+ # #### Convert `pd.DataFrame` to SQL tables
188
+
189
+ barbie_df.to_sql(
190
+ "barbie",
191
+ engine
192
+ )
193
+
194
+ oppenheimer_df.to_sql(
195
+ "oppenheimer",
196
+ engine
197
+ )
198
+
199
+ # #### Construct a `SQLDatabase` index
200
+
201
+ sql_database = SQLDatabase(
202
+ engine,
203
+ include_tables=["barbie", "oppenheimer"])
204
+
205
+ # #### Create the NLSQLTableQueryEngine interface for all added SQL tables
206
+
207
+ sql_query_engine = NLSQLTableQueryEngine(
208
+ sql_database=sql_database,
209
+ tables=["barbie", "oppenheimer"]
210
+ )
211
+
212
+ # #### Wrap It All Up in a `QueryEngineTool`
213
+
214
+ sql_tool = QueryEngineTool.from_defaults(
215
+ query_engine=sql_query_engine,
216
+ name="sql_tool",
217
+ description=(
218
+ """Useful for translating a natural language query into a SQL query over a table containing:
219
+ 1. barbie, containing information related to reviews of the Barbie movie.
220
+ 2. oppenheimer, containing information related to reviews of the Oppenheimer movie."""
221
+ ),
222
+ )
223
+
224
+ # ### Combining The Tools Together
225
+ # Now, we can simple add our tools into the `OpenAIAgent`, and off we go!
226
+
227
+ barbenheimer_agent = OpenAIAgent.from_tools(
228
+ [sql_tool, auto_retrieve_tool], llm=llm, verbose=True
229
+ )
230
+
231
+ cl.user_session.set("query_engine", barbenheimer_agent)
232
+
233
+
234
+ @cl.on_message
235
+ async def main(message):
236
+ query_engine = cl.user_session.get("query_engine") # type: RetrieverQueryEngine
237
+ logger.info(f"Received message: {message}")
238
+
239
+ response = query_engine.query(message)
240
+ logger.info("Response object created")
241
+
242
+ await cl.Message(content=json.dumps(f"{response}")).send()
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ openai==0.27.8
2
+ llama-index==0.8.6
3
+ nltk==3.8.1
4
+ chromadb==0.4.6
5
+ tiktoken==0.4.0
6
+ sentence-transformers==2.2.2
7
+ pydantic==1.10.11
8
+ wikipedia