Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
|
4 |
from transformers import AutoModel, AutoTokenizer
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
|
@@ -10,8 +9,6 @@ model = AutoModel.from_pretrained(model_name)
|
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
|
12 |
def generate_sentence_embedding(sentence, language):
|
13 |
-
|
14 |
-
# Set adapter to specified language
|
15 |
if "de" in language:
|
16 |
model.set_default_language("de_CH")
|
17 |
if "fr" in language:
|
@@ -20,15 +17,9 @@ def generate_sentence_embedding(sentence, language):
|
|
20 |
model.set_default_language("it_CH")
|
21 |
if "rm" in language:
|
22 |
model.set_default_language("rm_CH")
|
23 |
-
|
24 |
-
# Tokenize input sentence
|
25 |
inputs = tokenizer(sentence, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
26 |
-
|
27 |
-
# Take tokenized input and pass it through the model
|
28 |
with torch.no_grad():
|
29 |
outputs = model(**inputs)
|
30 |
-
|
31 |
-
# Extract sentence embeddings via mean pooling
|
32 |
token_embeddings = outputs.last_hidden_state
|
33 |
attention_mask = inputs['attention_mask'].unsqueeze(-1).expand(token_embeddings.size()).float()
|
34 |
sum_embeddings = torch.sum(token_embeddings * attention_mask, 1)
|
@@ -37,16 +28,13 @@ def generate_sentence_embedding(sentence, language):
|
|
37 |
return embedding
|
38 |
|
39 |
def calculate_cosine_similarities(source_sentence, source_language, target_sentence_1, target_language_1, target_sentence_2, target_language_2, target_sentence_3, target_language_3):
|
40 |
-
|
41 |
source_embedding = generate_sentence_embedding(source_sentence, source_language)
|
42 |
target_embedding_1 = generate_sentence_embedding(target_sentence_1, target_language_1)
|
43 |
target_embedding_2 = generate_sentence_embedding(target_sentence_2, target_language_2)
|
44 |
target_embedding_3 = generate_sentence_embedding(target_sentence_3, target_language_3)
|
45 |
-
|
46 |
cosine_score_1 = cosine_similarity(source_embedding, target_embedding_1)
|
47 |
cosine_score_2 = cosine_similarity(source_embedding, target_embedding_2)
|
48 |
cosine_score_3 = cosine_similarity(source_embedding, target_embedding_3)
|
49 |
-
|
50 |
cosine_scores = {
|
51 |
target_sentence_1: cosine_score_1[0][0],
|
52 |
target_sentence_2: cosine_score_2[0][0],
|
@@ -63,18 +51,23 @@ def main():
|
|
63 |
demo = gr.Interface(
|
64 |
fn=calculate_cosine_similarities,
|
65 |
inputs=[
|
66 |
-
gr.Textbox(lines=1, placeholder="
|
67 |
-
gr.Dropdown(["de", "fr", "it", "rm"],
|
68 |
-
gr.Textbox(lines=1, placeholder="
|
69 |
-
gr.Dropdown(["de", "fr", "it", "rm"],
|
70 |
-
gr.Textbox(lines=1, placeholder="
|
71 |
-
gr.Dropdown(["de", "fr", "it", "rm"],
|
72 |
-
gr.Textbox(lines=1, placeholder="
|
73 |
-
gr.Dropdown(["de", "fr", "it", "rm"],
|
74 |
],
|
75 |
-
outputs= gr.Textbox(label="Cosine
|
|
|
|
|
|
|
|
|
|
|
76 |
)
|
77 |
demo.launch(share=True)
|
78 |
|
79 |
if __name__ == "__main__":
|
80 |
-
main()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from transformers import AutoModel, AutoTokenizer
|
4 |
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
|
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
|
11 |
def generate_sentence_embedding(sentence, language):
|
|
|
|
|
12 |
if "de" in language:
|
13 |
model.set_default_language("de_CH")
|
14 |
if "fr" in language:
|
|
|
17 |
model.set_default_language("it_CH")
|
18 |
if "rm" in language:
|
19 |
model.set_default_language("rm_CH")
|
|
|
|
|
20 |
inputs = tokenizer(sentence, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
|
|
|
|
21 |
with torch.no_grad():
|
22 |
outputs = model(**inputs)
|
|
|
|
|
23 |
token_embeddings = outputs.last_hidden_state
|
24 |
attention_mask = inputs['attention_mask'].unsqueeze(-1).expand(token_embeddings.size()).float()
|
25 |
sum_embeddings = torch.sum(token_embeddings * attention_mask, 1)
|
|
|
28 |
return embedding
|
29 |
|
30 |
def calculate_cosine_similarities(source_sentence, source_language, target_sentence_1, target_language_1, target_sentence_2, target_language_2, target_sentence_3, target_language_3):
|
|
|
31 |
source_embedding = generate_sentence_embedding(source_sentence, source_language)
|
32 |
target_embedding_1 = generate_sentence_embedding(target_sentence_1, target_language_1)
|
33 |
target_embedding_2 = generate_sentence_embedding(target_sentence_2, target_language_2)
|
34 |
target_embedding_3 = generate_sentence_embedding(target_sentence_3, target_language_3)
|
|
|
35 |
cosine_score_1 = cosine_similarity(source_embedding, target_embedding_1)
|
36 |
cosine_score_2 = cosine_similarity(source_embedding, target_embedding_2)
|
37 |
cosine_score_3 = cosine_similarity(source_embedding, target_embedding_3)
|
|
|
38 |
cosine_scores = {
|
39 |
target_sentence_1: cosine_score_1[0][0],
|
40 |
target_sentence_2: cosine_score_2[0][0],
|
|
|
51 |
demo = gr.Interface(
|
52 |
fn=calculate_cosine_similarities,
|
53 |
inputs=[
|
54 |
+
gr.Textbox(lines=1, placeholder="Enter source sentence", label="Source Sentence"),
|
55 |
+
gr.Dropdown(["de", "fr", "it", "rm"], label="Source Language"),
|
56 |
+
gr.Textbox(lines=1, placeholder="Enter target sentence 1", label="Target Sentence 1"),
|
57 |
+
gr.Dropdown(["de", "fr", "it", "rm"], label="Target Language 1"),
|
58 |
+
gr.Textbox(lines=1, placeholder="Enter target sentence 2", label="Target Sentence 2"),
|
59 |
+
gr.Dropdown(["de", "fr", "it", "rm"], label="Target Language 2"),
|
60 |
+
gr.Textbox(lines=1, placeholder="Enter target sentence 3", label="Target Sentence 3"),
|
61 |
+
gr.Dropdown(["de", "fr", "it", "rm"], label="Target Language 3")
|
62 |
],
|
63 |
+
outputs= gr.Textbox(label="Cosine Similarity Scores", type="text", lines=3),
|
64 |
+
title="Sentence Similarity Calculator",
|
65 |
+
description="Enter a source sentence and up to three target sentences to calculate their cosine similarity.",
|
66 |
+
examples=[
|
67 |
+
["Der Zug fährt um 9 Uhr in Zürich ab.", "de", "Le train arrive à Lausanne à 11 heures.", "fr", "Alla stazione di Lugano ci sono diversi binari.", "it", "A Cuera van biars trens ellas muntognas.", "rm"]
|
68 |
+
]
|
69 |
)
|
70 |
demo.launch(share=True)
|
71 |
|
72 |
if __name__ == "__main__":
|
73 |
+
main()
|