import gradio as gr from huggingface_hub import InferenceClient from transformers import pipeline # Initialize the InferenceClient with the Zephyr model client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Use a pipeline for the ParlBERT model for fill-mask mask_pipe = pipeline("fill-mask", model="InfAI/parlbert-german-law") # Define the function for chat completion def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Function to handle mask filling def fill_mask_function(text): return mask_pipe(text) # Create the Gradio interface demo = gr.Interface( fn=respond, inputs=[ gr.Textbox(label="Enter your message"), gr.State(), # History gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], outputs=[ gr.Textbox(label="Response"), ], title="Zephyr and ParlBERT Chatbot", description="This chatbot uses Zephyr-7B model and ParlBERT (German Law) for conversation and masked word predictions." ) # Create a separate Gradio interface for the fill-mask model mask_demo = gr.Interface( fn=fill_mask_function, inputs=gr.Textbox(label="Input text with [MASK] token"), outputs=gr.JSON(label="Model output"), live=True, title="InfAI ParlBERT - German Law", description="Enter a sentence with a [MASK] token to get predictions from the InfAI ParlBERT model trained on German law text." ) # Launch both interfaces if __name__ == "__main__": demo.launch() mask_demo.launch()