Spaces:
Sleeping
Sleeping
File size: 8,795 Bytes
ae80c9a 3648e12 ed0a74e 3648e12 ae80c9a ed0a74e ae80c9a 3648e12 ae80c9a 3648e12 ae80c9a 3648e12 ae80c9a ed0a74e 3648e12 ae80c9a ed0a74e ae80c9a 3648e12 ae80c9a 3648e12 ed0a74e ae80c9a 3648e12 ae80c9a ed0a74e ae80c9a ed0a74e ae80c9a 3648e12 ed0a74e 3648e12 ed0a74e 3648e12 ed0a74e ae80c9a 3648e12 ae80c9a 3648e12 ae80c9a 3648e12 ae80c9a 3648e12 ae80c9a 3648e12 ae80c9a 3648e12 ed0a74e ae80c9a ed0a74e 3648e12 ed0a74e ae80c9a ed0a74e ae80c9a ed0a74e 3648e12 ed0a74e 3648e12 ed0a74e ae80c9a 3648e12 ed0a74e 3648e12 ae80c9a 3648e12 ed0a74e ae80c9a 3648e12 ed0a74e ae80c9a 3648e12 ae80c9a 3648e12 ae80c9a ed0a74e 3648e12 ae80c9a 3648e12 ed0a74e ae80c9a 3648e12 ae80c9a 3648e12 ed0a74e 7ffa603 ae80c9a 3648e12 ae80c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import os
import re
import secrets
import string
import yaml
from datetime import datetime
from zipfile import ZipFile
import gradio as gr
import nltk
import pandas as pd
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains import SimpleSequentialChain
from langchain.chat_models import ChatOpenAI
from nltk.tokenize import sent_tokenize
from pandas import DataFrame
import utils
from chains import llm_chains
# download NLTK dependencies
nltk.download("punkt")
nltk.download("stopwords")
# load stop words const.
from nltk.corpus import stopwords
STOP_WORDS = stopwords.words("english")
# load global spacy model
# try:
# SPACY_MODEL = spacy.load("en_core_web_sm")
# except OSError:
# print("[spacy] Downloading model: en_core_web_sm")
# spacy.cli.download("en_core_web_sm")
# SPACY_MODEL = spacy.load("en_core_web_sm")
class Text2KG:
"""Text2KG class."""
def __init__(self, api_key: str, **kwargs):
self.llm = ChatOpenAI(openai_api_key=api_key, **kwargs)
self.embedding = OpenAIEmbeddings(openai_api_key=api_key)
def init(self, steps: list[str]):
"""Initialize Text2KG pipeline from passed steps.
Args:
*steps (str): Steps to include in pipeline. Must be a top-level name present in
the schema.yml file
"""
self.pipeline = SimpleSequentialChain(
chains=[llm_chains[step](llm=self.llm) for step in steps],
verbose=False
)
def run(self, text: str) -> list[dict]:
"""Run Text2KG pipeline on passed text.
Arg:
text (str): The text input
Returns:
triplets (list): The list of extracted KG triplets
"""
triplets = self.pipeline.run(text)
return triplets
def clean(self, kg: DataFrame) -> DataFrame:
"""Text2KG post-processing."""
drop_list = []
for i, row in kg.iterrows():
# drop stopwords (e.g. pronouns)
if (row.subject in STOP_WORDS) or (row.object in STOP_WORDS):
drop_list.append(i)
# drop broken triplets
elif row.hasnans:
drop_list.append(i)
# lowercase nodes/edges, drop articles
else:
article_pattern = r'^(the|a|an) (.+)'
be_pattern = r'^(are|is) (a )?(.+)'
kg.at[i, "subject"] = re.sub(article_pattern, r'\2', row.subject.lower())
kg.at[i, "relation"] = re.sub(be_pattern, r'\3', row.relation.lower())
kg.at[i, "object"] = re.sub(article_pattern, r'\2', row.object.lower())
return kg.drop(drop_list)
def normalize(self, kg: DataFrame, threshold: float=0.3) -> DataFrame:
"""Reduce dimensionality of Text2KG output by merging cosine-similar nodes/edges."""
ents = pd.concat([kg["subject"], kg["object"]]).unique()
rels = kg["relation"].unique()
ent_map = utils.condense_labels(ents, self.embedding.embed_documents, threshold=threshold)
rel_map = utils.condense_labels(rels, self.embedding.embed_documents, threshold=threshold)
kg_normal = pd.DataFrame()
kg_normal["subject"] = kg["subject"].map(ent_map)
kg_normal["relation"] = kg["relation"].map(rel_map)
kg_normal["object"] = kg["object"].map(ent_map)
return kg_normal
def extract_knowledge_graph(api_key: str, batch_size: int, modules: list[str], text: str, progress=gr.Progress()):
"""Extract knowledge graph from text.
Args:
api_key (str): OpenAI API key
batch_size (int): Number of sentences per forward pass
modules (list): Additional modules to add before main extraction step
text (str): Text from which Text2KG will extract knowledge graph from
progress: Progress bar. The default is gradio's progress bar; for a
command line progress bar, set `progress = tqdm`
Returns:
zip_path (str): Path to ZIP archive containing outputs
knowledge_graph (DataFrame): The extracted knowledge graph
"""
# init
if api_key == "":
raise ValueError("API key is required")
pipeline = Text2KG(api_key=api_key, temperature=0.3) # low temp. -> low randomness
steps = []
for module in modules:
m = module.lower().replace(' ', '_')
steps.append(m)
if (len(steps) == 0) or (steps[-1] != "triplet_extraction"):
steps.append("triplet_extraction")
pipeline.init(steps)
# split text into batches
sentences = sent_tokenize(text)
batches = [" ".join(sentences[i:i+batch_size])
for i in range(0, len(sentences), batch_size)]
# create KG
knowledge_graph = []
for i, batch in progress.tqdm(list(enumerate(batches)),
desc="Processing...", unit="batches"):
output = pipeline.run(batch)
[triplet.update({"sentence_id": i}) for triplet in output]
knowledge_graph.extend(output)
# convert to df, post-process data
knowledge_graph = pd.DataFrame(knowledge_graph)
knowledge_graph = pipeline.clean(knowledge_graph)
# rearrange columns
knowledge_graph = knowledge_graph[["sentence_id", "subject", "relation", "object"]]
# metadata
now = datetime.now()
date = str(now.date())
metadata = {
"_timestamp": now,
"batch_size": batch_size,
"modules": steps
}
# unique identifier for local saving
uid = ''.join(secrets.choice(string.ascii_letters)
for _ in range(6))
print(f"Run ID: {date}/{uid}")
save_dir = os.path.join(".", "output", date, uid)
os.makedirs(save_dir, exist_ok=True)
# save metadata & data
with open(os.path.join(save_dir, "metadata.yml"), 'w') as f:
yaml.dump(metadata, f)
batches_df = pd.DataFrame(enumerate(batches), columns=["sentence_id", "text"])
batches_df.to_csv(os.path.join(save_dir, "sentences.txt"),
index=False)
knowledge_graph.to_csv(os.path.join(save_dir, "kg.txt"),
index=False)
# create ZIP file
zip_path = os.path.join(save_dir, "output.zip")
with ZipFile(zip_path, 'w') as zipObj:
zipObj.write(os.path.join(save_dir, "metadata.yml"))
zipObj.write(os.path.join(save_dir, "sentences.txt"))
zipObj.write(os.path.join(save_dir, "kg.txt"))
return zip_path, knowledge_graph
class App:
def __init__(self):
demo = gr.Interface(
fn=extract_knowledge_graph,
title="Text2KG",
inputs=[
gr.Textbox(placeholder="API key...", label="OpenAI API Key", type="password"),
gr.Slider(minimum=1, maximum=10, step=1, label="Sentence Batch Size"),
gr.CheckboxGroup(choices=["Clause Deconstruction"], label="Optional Modules"),
gr.Textbox(lines=2, placeholder="Text Here...", label="Input Text"),
],
outputs=[
gr.File(label="Knowledge Graph"),
gr.DataFrame(label="Preview",
headers=["sentence_id", "subject", "relation", "object"],
max_rows=10,
overflow_row_behaviour="paginate")
],
examples=[[None, 1, [], ("All cells share four common components: "
"1) a plasma membrane, an outer covering that separates the "
"cell's interior from its surrounding environment; 2) cytoplasm, "
"consisting of a jelly-like cytosol within the cell in which "
"there are other cellular components; 3) DNA, the cell's genetic "
"material; and 4) ribosomes, which synthesize proteins. However, "
"prokaryotes differ from eukaryotic cells in several ways. A "
"prokaryote is a simple, mostly single-celled (unicellular) "
"organism that lacks a nucleus, or any other membrane-bound "
"organelle. We will shortly come to see that this is significantly "
"different in eukaryotes. Prokaryotic DNA is in the cell's central "
"part: the nucleoid.")]],
allow_flagging="never",
cache_examples=False
)
demo.queue().launch(share=False)
if __name__ == "__main__":
App() |