File size: 8,795 Bytes
ae80c9a
3648e12
ed0a74e
 
3648e12
ae80c9a
ed0a74e
ae80c9a
 
3648e12
ae80c9a
3648e12
ae80c9a
 
 
3648e12
ae80c9a
ed0a74e
3648e12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae80c9a
 
 
ed0a74e
ae80c9a
 
 
3648e12
 
ae80c9a
 
3648e12
ed0a74e
 
 
 
 
 
ae80c9a
3648e12
ae80c9a
 
 
 
ed0a74e
 
 
 
 
 
 
 
 
ae80c9a
 
ed0a74e
ae80c9a
 
3648e12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed0a74e
 
 
3648e12
 
ed0a74e
 
 
 
 
 
3648e12
ed0a74e
ae80c9a
 
 
 
3648e12
 
 
ae80c9a
3648e12
 
 
ae80c9a
3648e12
 
ae80c9a
3648e12
 
 
ae80c9a
3648e12
 
ae80c9a
 
 
 
3648e12
 
 
ed0a74e
 
ae80c9a
 
 
ed0a74e
 
3648e12
ed0a74e
 
 
ae80c9a
ed0a74e
ae80c9a
 
ed0a74e
 
3648e12
 
 
ed0a74e
 
3648e12
ed0a74e
 
ae80c9a
3648e12
 
ed0a74e
 
 
 
 
3648e12
 
ae80c9a
3648e12
 
ed0a74e
 
 
 
 
 
 
 
 
 
ae80c9a
3648e12
ed0a74e
 
ae80c9a
3648e12
ae80c9a
 
 
 
 
3648e12
 
ae80c9a
ed0a74e
3648e12
 
ae80c9a
 
 
3648e12
 
ed0a74e
ae80c9a
3648e12
ae80c9a
3648e12
ed0a74e
 
 
 
 
 
 
 
 
 
 
7ffa603
 
ae80c9a
3648e12
ae80c9a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import re
import secrets
import string
import yaml
from datetime import datetime
from zipfile import ZipFile

import gradio as gr
import nltk
import pandas as pd
from langchain.embeddings import OpenAIEmbeddings
from langchain.chains import SimpleSequentialChain
from langchain.chat_models import ChatOpenAI
from nltk.tokenize import sent_tokenize
from pandas import DataFrame

import utils
from chains import llm_chains


# download NLTK dependencies
nltk.download("punkt")
nltk.download("stopwords")

# load stop words const.
from nltk.corpus import stopwords
STOP_WORDS = stopwords.words("english")

# load global spacy model
# try:
#     SPACY_MODEL = spacy.load("en_core_web_sm")
# except OSError:
#     print("[spacy] Downloading model: en_core_web_sm")
    
#     spacy.cli.download("en_core_web_sm")
#     SPACY_MODEL = spacy.load("en_core_web_sm")


class Text2KG:
    """Text2KG class."""

    def __init__(self, api_key: str, **kwargs):

        self.llm = ChatOpenAI(openai_api_key=api_key, **kwargs)
        self.embedding = OpenAIEmbeddings(openai_api_key=api_key)

    
    def init(self, steps: list[str]):
        """Initialize Text2KG pipeline from passed steps.
        
        Args:
            *steps (str): Steps to include in pipeline. Must be a top-level name present in
                the schema.yml file
        """
        self.pipeline = SimpleSequentialChain(
            chains=[llm_chains[step](llm=self.llm) for step in steps],
            verbose=False
        )

    
    def run(self, text: str) -> list[dict]:
        """Run Text2KG pipeline on passed text.
        
        Arg:
            text (str): The text input
        
        Returns:
            triplets (list): The list of extracted KG triplets
        """
        triplets = self.pipeline.run(text)

        return triplets


    def clean(self, kg: DataFrame) -> DataFrame:
        """Text2KG post-processing."""
        drop_list = []

        for i, row in kg.iterrows():
            # drop stopwords (e.g. pronouns)
            if (row.subject in STOP_WORDS) or (row.object in STOP_WORDS):
                drop_list.append(i)

            # drop broken triplets
            elif row.hasnans:
                drop_list.append(i)
            
            # lowercase nodes/edges, drop articles
            else:
                article_pattern = r'^(the|a|an) (.+)'
                be_pattern = r'^(are|is) (a )?(.+)'

                kg.at[i, "subject"] = re.sub(article_pattern, r'\2', row.subject.lower())
                kg.at[i, "relation"] = re.sub(be_pattern, r'\3', row.relation.lower())
                kg.at[i, "object"] = re.sub(article_pattern, r'\2', row.object.lower())

        return kg.drop(drop_list)


    def normalize(self, kg: DataFrame, threshold: float=0.3) -> DataFrame:
        """Reduce dimensionality of Text2KG output by merging cosine-similar nodes/edges."""

        ents = pd.concat([kg["subject"], kg["object"]]).unique()
        rels = kg["relation"].unique()

        ent_map = utils.condense_labels(ents, self.embedding.embed_documents, threshold=threshold)
        rel_map = utils.condense_labels(rels, self.embedding.embed_documents, threshold=threshold)

        kg_normal = pd.DataFrame()
        
        kg_normal["subject"] = kg["subject"].map(ent_map)
        kg_normal["relation"] = kg["relation"].map(rel_map)
        kg_normal["object"] = kg["object"].map(ent_map)

        return kg_normal


def extract_knowledge_graph(api_key: str, batch_size: int, modules: list[str], text: str, progress=gr.Progress()):
    """Extract knowledge graph from text.
    
    Args:
        api_key (str): OpenAI API key
        batch_size (int): Number of sentences per forward pass
        modules (list): Additional modules to add before main extraction step
        text (str): Text from which Text2KG will extract knowledge graph from
        progress: Progress bar. The default is gradio's progress bar; for a 
            command line progress bar, set `progress = tqdm`

    Returns:
        zip_path (str): Path to ZIP archive containing outputs
        knowledge_graph (DataFrame): The extracted knowledge graph
    """
    # init
    if api_key == "":
        raise ValueError("API key is required")
    
    pipeline = Text2KG(api_key=api_key, temperature=0.3) # low temp. -> low randomness

    steps = []

    for module in modules:
        m = module.lower().replace(' ', '_')
        steps.append(m)

    if (len(steps) == 0) or (steps[-1] != "triplet_extraction"):
        steps.append("triplet_extraction")

    pipeline.init(steps)

    # split text into batches
    sentences = sent_tokenize(text)
    batches = [" ".join(sentences[i:i+batch_size])
               for i in range(0, len(sentences), batch_size)]
    
    # create KG
    knowledge_graph = []
    
    for i, batch in progress.tqdm(list(enumerate(batches)), 
                                  desc="Processing...", unit="batches"):
        output = pipeline.run(batch)
        [triplet.update({"sentence_id": i}) for triplet in output]

        knowledge_graph.extend(output)


    # convert to df, post-process data
    knowledge_graph = pd.DataFrame(knowledge_graph)
    knowledge_graph = pipeline.clean(knowledge_graph)
    
    # rearrange columns
    knowledge_graph = knowledge_graph[["sentence_id", "subject", "relation", "object"]]

    # metadata
    now = datetime.now()
    date = str(now.date())

    metadata = {
        "_timestamp": now,
        "batch_size": batch_size,
        "modules": steps
    }

    # unique identifier for local saving
    uid = ''.join(secrets.choice(string.ascii_letters)
                  for _ in range(6))
    
    print(f"Run ID: {date}/{uid}")
    
    save_dir = os.path.join(".", "output", date, uid)
    os.makedirs(save_dir, exist_ok=True)


    # save metadata & data
    with open(os.path.join(save_dir, "metadata.yml"), 'w') as f:
        yaml.dump(metadata, f)
    
    batches_df = pd.DataFrame(enumerate(batches), columns=["sentence_id", "text"])
    batches_df.to_csv(os.path.join(save_dir, "sentences.txt"), 
                     index=False)

    knowledge_graph.to_csv(os.path.join(save_dir, "kg.txt"), 
                           index=False)    
    

    # create ZIP file
    zip_path = os.path.join(save_dir, "output.zip")

    with ZipFile(zip_path, 'w') as zipObj:

        zipObj.write(os.path.join(save_dir, "metadata.yml"))
        zipObj.write(os.path.join(save_dir, "sentences.txt"))
        zipObj.write(os.path.join(save_dir, "kg.txt"))

    return zip_path, knowledge_graph


class App:
    def __init__(self):
        demo = gr.Interface(
            fn=extract_knowledge_graph,
            title="Text2KG",
            inputs=[
                gr.Textbox(placeholder="API key...", label="OpenAI API Key", type="password"),
                gr.Slider(minimum=1, maximum=10, step=1, label="Sentence Batch Size"),
                gr.CheckboxGroup(choices=["Clause Deconstruction"], label="Optional Modules"),
                gr.Textbox(lines=2, placeholder="Text Here...", label="Input Text"),
            ],
            outputs=[
                gr.File(label="Knowledge Graph"),
                gr.DataFrame(label="Preview", 
                             headers=["sentence_id", "subject", "relation", "object"], 
                             max_rows=10, 
                             overflow_row_behaviour="paginate")
            ],
            examples=[[None, 1, [], ("All cells share four common components: "
                                        "1) a plasma membrane, an outer covering that separates the "
                                        "cell's interior from its surrounding environment; 2) cytoplasm, "
                                        "consisting of a jelly-like cytosol within the cell in which "
                                        "there are other cellular components; 3) DNA, the cell's genetic "
                                        "material; and 4) ribosomes, which synthesize proteins. However, "
                                        "prokaryotes differ from eukaryotic cells in several ways. A "
                                        "prokaryote is a simple, mostly single-celled (unicellular) "
                                        "organism that lacks a nucleus, or any other membrane-bound "
                                        "organelle. We will shortly come to see that this is significantly "
                                        "different in eukaryotes. Prokaryotic DNA is in the cell's central "
                                        "part: the nucleoid.")]],
            allow_flagging="never",
            cache_examples=False
        )
        demo.queue().launch(share=False)


if __name__ == "__main__":
    App()