File size: 5,238 Bytes
3273f67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import io
import os
import sys
from zipfile import ZipFile

sys.path.append(os.path.dirname(os.path.dirname(__file__)))

import pandas as pd
import streamlit as st
import streamlit.components.v1 as st_components
from pandas import DataFrame
from pyvis.network import Network

from words2wisdom import CONFIG_DIR
from words2wisdom.config import Config as W2WConfig
from words2wisdom.pipeline import Pipeline


def create_graph(df: DataFrame):
    graph = Network(directed=True)

    entities = pd.concat([df.subject, df.object]).unique()

    graph.add_nodes(entities, label=entities, title=entities)

    df_iterable = (
        df.drop_duplicates(
            subset=["subject", "relation", "object"]
        )
        .iterrows()
    )

    for _, row in df_iterable:
        graph.add_edge(row.subject, row.object, label=row.relation)

    graph.save_graph("/tmp/graph.html")
    HtmlFile = open("/tmp/graph.html")
    
    return st_components.html(HtmlFile.read(), height=625)


@st.cache_data
def create_zip_bytes(file_contents):
    buffer = io.BytesIO()
    with ZipFile(buffer, 'w') as zip_file:
        for filename, content in file_contents.items():
            zip_file.writestr(filename, content)
    return buffer.getvalue()


st.set_page_config(page_title="Words2Wisdom",
                   page_icon="πŸ“–")
st.title("πŸ“– Words2Wisdom")
st.write("Generate knowledge graphs from unstructured text using GPT.")

# parameters
with st.sidebar:
    st.title("Parameters")

    st.write("The API Key is required. Feel free to customize the other parameters, if you'd like!")

    openai_api_key = st.text_input(
        label="πŸ” **OpenAI API Key**", 
        type="password",
        help="Learn how to get your own [here](https://platform.openai.com/docs/api-reference/authentication)."
    )
    st.divider()

    with st.expander("🚰 **Pipeline parameters**"):

        formatter = lambda x: x.replace("_", " ").title()

        words_per_batch = st.number_input(
            label="Words per Batch", 
            min_value=0, 
            max_value=200,
            value=150,
            help="Batch text into paragraphs containing at least N words, if possible."
        )

        preprocess = st.selectbox(
            label="Preprocess", 
            options=("None", "clause_deconstruction"), 
            index=1,
            format_func=formatter, 
            help="Method for text simplification."
        )

        extraction = st.selectbox(
            label="Generation", 
            options=("triplet_extraction",), 
            index=0,
            format_func=formatter,
            help="Method for KG generation."
        )

    with st.expander("πŸ€– **LLM parameters**"):
        model = st.selectbox(
            label="Model",
            options=("gpt-3.5-turbo",),
            index=0,
            help="ID of the model to use."
        )

        temperature = st.slider(
            label="Temperature",
            min_value=0.0,
            max_value=2.0,
            value=1.0,
            step=0.1,
            format="%.1f",
            help=(
                "What sampling temperature to use."
                " Higher values will make the output more random;"
                " lower values will make it more focused/deterministic."
            )
        )


# API Key warning 
if not openai_api_key.startswith('sk-'):
    st.warning('Please enter your OpenAI API key.', icon='⚠️')


# tabs
tab1, tab2 = st.tabs(["Input Text", "File Upload"])


# text input tab
with tab1:
    text1 = st.text_area(label="Enter text:")
    submitted1 = tab1.button(label="Generate!", use_container_width=True)


# file upload tab
with tab2:
    file2 = tab2.file_uploader(label="Upload text file:", type="txt")
    submitted2 = tab2.button(key="filebtn", label="Generate!", use_container_width=True)


# w2w config
w2w_config = W2WConfig.read_ini(os.path.join(CONFIG_DIR, "default_config.ini"))
w2w_config.pipeline = {
    "words_per_batch": words_per_batch,
    "preprocess": [] if preprocess == "None" else [preprocess],
    "extraction": extraction
}
w2w_config.llm["openai_api_key"] = openai_api_key


# main logic
if (submitted1 or submitted2) and openai_api_key.startswith("sk-"):
    with st.status("Generating knowledge graph..."):
        st.write("Initializing pipeline...")
        pipe = Pipeline(w2w_config)
        st.write("Executing pipeline...")

        if submitted1:
            text = text1
        elif submitted2:
            text = file2.read().decode()
        
        text_batches, knowledge_graph = pipe.run(text)
        st.write("Complete.")

    st.divider()
    
    kg_viz = create_graph(knowledge_graph)

    st.error("**Warning:** The page will refresh when you download the data!", icon="🚨")

    download = st.download_button(
        label="Download data",
        data=create_zip_bytes({
            "text_batches.csv": (
                DataFrame(text_batches, columns=["text"])
                .to_csv(index_label="batch_id")
            ),
            "kg.csv": knowledge_graph.to_csv(index=False),
            "config.ini": pipe.serialize()
        }),
        file_name="output.zip",
        use_container_width=True,
        type="primary"
    )