Spaces:
Sleeping
Sleeping
File size: 6,099 Bytes
4b9251f 3273f67 4b9251f 3273f67 4b9251f 3273f67 4b9251f 3273f67 4b9251f 3273f67 4b9251f 3273f67 4b9251f 3273f67 4b9251f 3273f67 4b9251f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import re
from typing import List
import pandas as pd
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from nltk.tokenize import sent_tokenize
from . import MODULES_CONFIG, STOP_WORDS
from .config import Config
from .output_parsers import ClauseParser, TripletParser
from .utils import partition_sentences
# llm output parsers
PARSERS = {
"StrOutputParser": StrOutputParser(),
"ClauseParser": ClauseParser(),
"TripletParser": TripletParser()
}
class Module:
"""Words2Wisdom module class."""
def __init__(self, name: str) -> None:
self.name = name
self.parser = self.get_parser()
self.prompts = self.get_prompts()
self.type = self.get_module_type()
def __repr__(self):
return self.name.replace("_", " ").title().replace(" ", "") + "()"
def get_prompts(self):
return ChatPromptTemplate.from_messages(MODULES_CONFIG[self.name]["prompts"].items())
def get_parser(self):
return PARSERS.get(MODULES_CONFIG[self.name]["parser"], StrOutputParser())
def get_module_type(self):
return MODULES_CONFIG[self.name]["type"]
class Pipeline:
"""Words2Wisdom pipeline class."""
def __init__(self, config: Config):
self.config = config
self.initialize(config)
def __call__(self, text: str, clean: bool=True) -> pd.DataFrame:
return self.run(text, clean)
def __repr__(self) -> str:
return f"Words2Wisdom(\n\tconfig.pipeline={self.config.pipeline}\n\tconfig.llm={self.config.llm}\n)"
def __str__(self) -> str:
return ("[INPUT: text] -> "
+ " -> ".join([str(m) for m in self.modules])
+ " -> [OUTPUT: knowledge graph]")
@classmethod
def from_ini(cls, config_path: str):
return cls(Config.read_ini(config_path))
def initialize(self, config: Config):
"""Initialize Words2Wisdom pipeline from config."""
# validate preprocess
preprocess_modules = [Module(name) for name in config.pipeline["preprocess"]]
for item in preprocess_modules:
if item.get_module_type() != "preprocess":
raise ValueError(f"Expected preprocess step `{item.name}` to"
f" have module type='preprocess'. Consider reviewing"
f" schema.yml")
# validate extraction process
extraction_module = Module(config.pipeline["extraction"])
if extraction_module.get_module_type() != "extraction":
raise ValueError(f"Expected `{extraction_module.name}` to have module"
f" type='extraction'. Consider reviewing schema.yml")
# combine preprocess + extraction
self.modules = preprocess_modules + [extraction_module]
# init prompts & parsers
prompts = [m.get_prompts() for m in self.modules]
parsers = [m.get_parser() for m in self.modules]
# init llm
llm = ChatOpenAI(**self.config.llm)
# init chains
chains = [(prompt | llm | parser)
for prompt, parser in zip(prompts, parsers)]
# stitch chains together
self.pipeline = {"text": RunnablePassthrough()} | chains[0]
for i in range(1, len(chains)):
self.pipeline = {"text": self.pipeline} | chains[i]
# print pipeline
print("Initialized Words2Wisdom pipeline:")
print(str(self))
def run(self, text: str, clean=True) -> tuple[List[str], pd.DataFrame]:
"""Run Words2Wisdom pipeline on passed text.
Args:
*texts (str): The text inputs
clean (bool): Whether to clean the raw KG or not
Returns:
text_batches (list): Batched text
knowledge_graph (DataFrame): A dataframe containing the extracted KG triplets,
indexed by batch
"""
print("Running Words2Wisdom pipeline:")
# split text into batches
text_batches = list(partition_sentences(
sentences=sent_tokenize(text),
min_words=self.config.pipeline["words_per_batch"]
))
# run pipeline in parallel; convert to dataframe
print("Extracting knowledge graph...", end=' ')
output = self.pipeline.batch(text_batches)
knowledge_graph = pd.DataFrame([{'batch_id': i, **triplet}
for i, batch in enumerate(output)
for triplet in batch])
if clean:
knowledge_graph = self._clean(knowledge_graph)
print("Done!", end='\n')
return text_batches, knowledge_graph
def _clean(self, kg: pd.DataFrame) -> pd.DataFrame:
"""Words2Wisdom post-processing."""
print("Cleaning knowledge graph components...", end=' ')
drop_list = []
for i, row in kg.iterrows():
# drop stopwords (e.g. pronouns)
if (row.subject in STOP_WORDS) or (row.object in STOP_WORDS):
drop_list.append(i)
# drop broken triplets
elif row.hasnans:
drop_list.append(i)
# lowercase nodes/edges, drop articles
else:
article_pattern = r'^(the|a|an) (.+)'
be_pattern = r'^(are|is) (a |an )?(.+)'
kg.at[i, "subject"] = re.sub(article_pattern, r'\2', row.subject.lower())
kg.at[i, "relation"] = re.sub(be_pattern, r'\3', row.relation.lower())
kg.at[i, "object"] = re.sub(article_pattern, r'\2', row.object.lower()).strip('.')
return kg.drop(drop_list)
def _normalize(self):
"""Unused."""
return
def serialize(self):
return self.config.serialize() |