File size: 5,095 Bytes
4b9251f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3273f67
4b9251f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import re
from time import time
from argparse import ArgumentParser
from typing import List
from zipfile import ZipFile

import pandas as pd
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate

from . import VALIDATION_CONFIG, OUTPUT_DIR
from .output_parsers import QuestionOutputParser


def parse_args():
    parser = ArgumentParser()
    parser.add_argument(
        "run_ids", nargs="+", help="Run IDs to evaluate. Format: YYYY-MM-DD-XXX"
    )
    parser.add_argument(
        "--search_dir", help="Directory to search for output", default=OUTPUT_DIR
    )
    return parser.parse_args()


def format_system_prompt():
    """Format instructional prompt from instructions.yml"""

    def format_question(question: dict):
        # Question format: {text} {additional} {options}
        # Ex. Can pigs fly? Explain. (Yes/No)
        formatted = (
            question["title"]
            + " "
            + question["text"]
            + " "
            + (question["additional"] + " " if question["additional"] else "")
            + "("
            + "; ".join(question["options"])
            + ")\n"
        )
        return formatted

    def format_example(example: dict):
        formatted = (
            f"PASSAGE: {example['passage']}\n"
            f"TRIPLET: {example['triplet']}\n\n"
            + "".join([
                f"{i}) {answer}\n"
                for i, answer in enumerate(example["answers"].values(), start=1)
            ])
        )
        return formatted

    instruction = VALIDATION_CONFIG["instruction"]
    questions = "".join([
        f"{i}) {format_question(q)}"
        for i, q in enumerate(VALIDATION_CONFIG["questions"].values(), start=1)
    ])
    example = format_example(VALIDATION_CONFIG["example"])

    system_prompt = (
        f"{instruction}\n" f"QUESTIONS:\n{questions}\n" f"[* EXAMPLE *]\n\n{example}"
    )

    return system_prompt


def validate_triplets(
    llm: ChatOpenAI, instruction: str, passage: str, triplets: List[List[str]]
) -> List[pd.DataFrame]:
    """Validate triplets with respect to passage."""

    print(
        f"Validating {len(triplets):>2} triplet{'s' if len(triplets) else ''}...",
        end=" ",
    )

    prompt = ChatPromptTemplate.from_messages([
        ("system", "{instruction}"),
        ("user", "PASSAGE: {passage}\n\nTRIPLET: {triplet}"),
    ])

    chain = prompt | llm | QuestionOutputParser()

    output = chain.batch([
        {"instruction": instruction, "passage": passage, "triplet": triplet}
        for triplet in triplets
    ])

    print("Done!", end="\n")
    return output


def validate_knowledge_graph(llm: ChatOpenAI, output_zip: str):
    """Validate all triplets in a knowledge graph."""

    run_id = re.findall(r"output-(.*)\.zip", output_zip)[0]
    run_dir = os.path.dirname(output_zip)

    # read output zip
    with ZipFile(output_zip) as z:
        # load knowledge graph
        with z.open("kg.csv") as f:
            graph = pd.read_csv(f)

        # load text batches
        with z.open("text_batches.csv") as f:
            text_batches = pd.read_csv(f)

    print("Initializing knowledge graph validation. Run:", run_id)
    print()

    # start stopwatch
    start = time()

    # container for evaluation responses
    responses = []

    # instructions
    instruction = format_system_prompt()

    # triplets are batched by passage
    # so we iterate over passages
    for idx, passage in enumerate(text_batches.text):
        triplets = (
            graph[graph["batch_id"] == idx].drop(columns=["batch_id"]).values.tolist()
        )

        print(f"Starting excerpt {idx + 1:>2} of {len(text_batches)}.", end=" ")

        # if batch has no triplets to validate, skip batch
        if len(triplets) == 0:
            print("Excerpt has no triplets to validate.", end="\n")
            continue

        # validate triplets by batch
        response = validate_triplets(
            llm=llm, 
            instruction=instruction, 
            passage=passage, 
            triplets=triplets
        )
        responses.extend(response)

    validation = pd.concat(responses, ignore_index=True)

    # merge with knowlege graph data
    validation_merged = (
        text_batches.merge(graph)
        .drop(columns=["batch_id"])
        .merge(validation, left_index=True, right_index=True)
    )

    savepath = os.path.join(run_dir, f"validation-{run_id}.csv")
    validation_merged.to_csv(savepath, index=False)
    # stop stopwatch
    end = time()

    print("\nKnowledge graph validation complete!")
    print(f"It took {end - start:0.3f} seconds to validate {len(validation)} triplets.")
    print("Saved to:", savepath)

    return savepath


if __name__ == "__main__":
    args = parse_args()

    llm = ChatOpenAI(
        model="gpt-4-turbo-preview", 
        openai_api_key=os.getenv("OPENAI_API_KEY")
    )

    for run_id in args.run_ids:
        zipfile = os.path.join(args.search_dir, f"output-{run_id}.zip")
        validate_knowledge_graph(llm, run_id)
        print("* " * 25)