Spaces:
Sleeping
Sleeping
johaunh
commited on
Commit
·
6e88b42
1
Parent(s):
1644984
Add demo
Browse files- README.md +6 -3
- text2kg.py +52 -33
README.md
CHANGED
@@ -23,6 +23,8 @@ infile
|
|
23 |
optional flag to save intermediary GPT prompts/replies
|
24 |
```
|
25 |
|
|
|
|
|
26 |
## File structure
|
27 |
|
28 |
### [`data`](./data/)
|
@@ -34,6 +36,7 @@ Name | Description | Source
|
|
34 |
|
35 |
## References
|
36 |
|
37 |
-
1. A case study in bootstrapping ontology graphs from textbooks (V. K. Chaudhri et al., 2021)
|
38 |
-
2. Seq2KG: an end-to-end neural model for domain agnostic knowledge graph (not text graph) construction from text (M. Stewart & W. Liu, 2020)
|
39 |
-
3. Language models are open knowledge graphs (C. Wang et al., 2020)
|
|
|
|
23 |
optional flag to save intermediary GPT prompts/replies
|
24 |
```
|
25 |
|
26 |
+
In my experiments, the rate of the processing is about 2 seconds per sentence per pipeline step.
|
27 |
+
|
28 |
## File structure
|
29 |
|
30 |
### [`data`](./data/)
|
|
|
36 |
|
37 |
## References
|
38 |
|
39 |
+
1. A case study in bootstrapping ontology graphs from textbooks. (V. K. Chaudhri et al., 2021)
|
40 |
+
2. Seq2KG: an end-to-end neural model for domain agnostic knowledge graph (not text graph) construction from text. (M. Stewart & W. Liu, 2020)
|
41 |
+
3. Language models are open knowledge graphs. (C. Wang et al., 2020)
|
42 |
+
4. ProofWriter: generating implications, proofs, and abductive statements over natural language. (O. Tafjord et al., 2020)
|
text2kg.py
CHANGED
@@ -3,25 +3,63 @@ import os
|
|
3 |
from argparse import ArgumentParser
|
4 |
from datetime import date
|
5 |
|
|
|
|
|
6 |
from nltk.tokenize import sent_tokenize
|
7 |
-
from tqdm import tqdm
|
8 |
|
9 |
from pipeline import Text2KG
|
10 |
|
11 |
|
|
|
|
|
|
|
12 |
def parse_args():
|
13 |
parser = ArgumentParser()
|
14 |
-
parser.add_argument("infile", type=str)
|
15 |
parser.add_argument("--output", type=str, default="./output")
|
16 |
-
parser.add_argument("--cookbook", type=str, default=
|
17 |
-
|
18 |
-
parser.add_argument("--recipe", type=str,
|
19 |
help="name of recipe to use"),
|
20 |
-
parser.add_argument("--thoughts", action="store_true"
|
|
|
|
|
|
|
21 |
|
22 |
return parser.parse_args()
|
23 |
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def save(name, item, args):
|
26 |
|
27 |
os.makedirs(args.output, exist_ok=True)
|
@@ -35,33 +73,14 @@ def save(name, item, args):
|
|
35 |
|
36 |
|
37 |
def main(args):
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
raise ValueError(f"Recipe '{args.recipe}' does not exist in cookbook.")
|
47 |
-
|
48 |
-
pipe = Text2KG(recipe)
|
49 |
-
|
50 |
-
with open(args.infile) as f:
|
51 |
-
text = f.read()
|
52 |
-
|
53 |
-
sentences = sent_tokenize(text.replace('\n', ' '))
|
54 |
-
|
55 |
-
triplets = [pipe(s) for s in tqdm(sentences)]
|
56 |
-
|
57 |
-
output = [{"sentence": s, "triplets": t} for s, t in zip(sentences, triplets)]
|
58 |
-
|
59 |
-
save("triplets", output, args)
|
60 |
-
|
61 |
-
if args.thoughts:
|
62 |
-
save("thoughts", pipe.history, args)
|
63 |
-
|
64 |
-
return output
|
65 |
|
66 |
|
67 |
if __name__ == "__main__":
|
|
|
3 |
from argparse import ArgumentParser
|
4 |
from datetime import date
|
5 |
|
6 |
+
import gradio as gr
|
7 |
+
import tqdm
|
8 |
from nltk.tokenize import sent_tokenize
|
|
|
9 |
|
10 |
from pipeline import Text2KG
|
11 |
|
12 |
|
13 |
+
COOKBOOK = "./recipes.json"
|
14 |
+
|
15 |
+
|
16 |
def parse_args():
|
17 |
parser = ArgumentParser()
|
18 |
+
parser.add_argument("--infile", type=str)
|
19 |
parser.add_argument("--output", type=str, default="./output")
|
20 |
+
# parser.add_argument("--cookbook", type=str, default=COOKBOOK,
|
21 |
+
# help="path to prompt recipes")
|
22 |
+
parser.add_argument("--recipe", type=str, choices=["Direct", "Traditional", "LogicBased"],
|
23 |
help="name of recipe to use"),
|
24 |
+
# parser.add_argument("--thoughts", action="store_true",
|
25 |
+
# help="whether to save GPT prompt/response chain")
|
26 |
+
parser.add_argument("--demo", action="store_true",
|
27 |
+
help="execute Gradio app; overrides other arguments")
|
28 |
|
29 |
return parser.parse_args()
|
30 |
|
31 |
|
32 |
+
def text2kg(recipe: str, text: str, progress=gr.Progress()):
|
33 |
+
with open(COOKBOOK) as f:
|
34 |
+
cookbook = json.load(f)
|
35 |
+
|
36 |
+
for item in cookbook:
|
37 |
+
if item["name"] == recipe:
|
38 |
+
prompts = item
|
39 |
+
|
40 |
+
pipe = Text2KG(prompts)
|
41 |
+
sentences = sent_tokenize(text.replace("\n", " "))
|
42 |
+
|
43 |
+
triplets = [pipe(s) for s in progress.tqdm(sentences, desc="Processing")]
|
44 |
+
output = [{"sentence": s, "triplets": t} for s, t in zip(sentences, triplets)]
|
45 |
+
|
46 |
+
return output
|
47 |
+
|
48 |
+
|
49 |
+
class App:
|
50 |
+
def __init__(self):
|
51 |
+
|
52 |
+
demo = gr.Interface(
|
53 |
+
fn=text2kg,
|
54 |
+
inputs=[
|
55 |
+
gr.Radio(["Direct", "Traditional", "LogicBased"], label="Recipe"),
|
56 |
+
gr.Textbox(lines=2, placeholder="Text Here...", label="Input Text")
|
57 |
+
],
|
58 |
+
outputs=gr.JSON(label="KG Triplets"),
|
59 |
+
)
|
60 |
+
demo.queue(concurrency_count=10).launch()
|
61 |
+
|
62 |
+
|
63 |
def save(name, item, args):
|
64 |
|
65 |
os.makedirs(args.output, exist_ok=True)
|
|
|
73 |
|
74 |
|
75 |
def main(args):
|
76 |
+
if args.demo:
|
77 |
+
App()
|
78 |
+
else:
|
79 |
+
with open(args.infile) as f:
|
80 |
+
text = f.read()
|
81 |
+
|
82 |
+
output = text2kg(recipe=args.recipe, text=text, progress=tqdm)
|
83 |
+
save("triplets", output, args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
|
86 |
if __name__ == "__main__":
|