Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,14 +2,10 @@ import gradio as gr
|
|
2 |
from datasets import load_dataset
|
3 |
|
4 |
# --- Configuration ---
|
5 |
-
DATASET_NAME = "Cnam-LMSSC/vibravox
|
6 |
-
|
7 |
-
|
8 |
TEXT_COLUMN = "raw_text"
|
9 |
-
|
10 |
-
# --- THE FINAL, CORRECT COLUMN NAMES ---
|
11 |
-
# Based on the official dataset viewer on Hugging Face and the KeyError.
|
12 |
-
# This list is now definitive.
|
13 |
AUDIO_COLUMNS = [
|
14 |
"audio.headset_microphone",
|
15 |
"audio.throat_microphone",
|
@@ -19,60 +15,127 @@ AUDIO_COLUMNS = [
|
|
19 |
"audio.temple_vibration_pickup"
|
20 |
]
|
21 |
|
22 |
-
# ---
|
23 |
-
try:
|
24 |
-
# Load the dataset normally.
|
25 |
-
dataset = load_dataset(DATASET_NAME, DATASET_CONFIG, split=DATASET_SPLIT)
|
26 |
-
except Exception as e:
|
27 |
-
dataset = None
|
28 |
-
app_error = e
|
29 |
|
30 |
-
|
31 |
-
def get_audio_row(index: int):
|
32 |
"""
|
33 |
-
|
|
|
34 |
"""
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
# This will now work because we are using the correct column names.
|
41 |
-
# We extract the raw audio (NumPy array) and sampling rate directly.
|
42 |
raw_audio_data = [
|
43 |
(sample[col]['sampling_rate'], sample[col]['array']) for col in AUDIO_COLUMNS
|
44 |
]
|
45 |
|
46 |
return [sentence] + raw_audio_data
|
47 |
|
|
|
48 |
# --- Build the Gradio Interface ---
|
49 |
with gr.Blocks(css="footer {display: none !important}") as demo:
|
50 |
-
gr.Markdown("# Vibravox Multi-
|
51 |
-
|
52 |
-
if dataset is None:
|
53 |
-
gr.Markdown("## 💥 Application Error")
|
54 |
-
gr.Markdown(f"Could not load or process the dataset. Error: `{app_error}`")
|
55 |
-
else:
|
56 |
-
gr.Markdown("Select a row to listen to all corresponding audio sensor recordings.")
|
57 |
|
58 |
-
|
|
|
|
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
audio2 = gr.Audio(label="Laryngophone (Throat Mic)")
|
66 |
-
audio3 = gr.Audio(label="Soft In-Ear Microphone")
|
67 |
-
with gr.Row():
|
68 |
-
audio4 = gr.Audio(label="Rigid In-Ear Microphone")
|
69 |
-
audio5 = gr.Audio(label="Forehead Accelerometer")
|
70 |
-
audio6 = gr.Audio(label="Temple Vibration Pickup")
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
# Launch the application
|
78 |
demo.launch()
|
|
|
2 |
from datasets import load_dataset
|
3 |
|
4 |
# --- Configuration ---
|
5 |
+
DATASET_NAME = "Cnam-LMSSC/vibravox"
|
6 |
+
SUBSETS = ["speech_clean", "speech_noisy", "speechless_clean", "speechless_noisy"]
|
7 |
+
SPLITS = ["train", "validation", "test"]
|
8 |
TEXT_COLUMN = "raw_text"
|
|
|
|
|
|
|
|
|
9 |
AUDIO_COLUMNS = [
|
10 |
"audio.headset_microphone",
|
11 |
"audio.throat_microphone",
|
|
|
15 |
"audio.temple_vibration_pickup"
|
16 |
]
|
17 |
|
18 |
+
# --- Main Application Logic ---
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
def load_and_update_all(subset, split):
|
|
|
21 |
"""
|
22 |
+
This is the main function. It loads a new dataset based on user selection
|
23 |
+
and returns updates for the entire UI, including the first row of data.
|
24 |
"""
|
25 |
+
try:
|
26 |
+
# Load the newly selected dataset
|
27 |
+
dataset = load_dataset(DATASET_NAME, name=subset, split=split)
|
28 |
+
|
29 |
+
# Check if the text column exists in this subset
|
30 |
+
has_text = TEXT_COLUMN in dataset.features
|
31 |
+
|
32 |
+
# Get the first row to display immediately
|
33 |
+
sample = dataset[0]
|
34 |
+
sentence = sample[TEXT_COLUMN] if has_text else None
|
35 |
+
raw_audio_data = [
|
36 |
+
(sample[col]['sampling_rate'], sample[col]['array']) for col in AUDIO_COLUMNS
|
37 |
+
]
|
38 |
+
|
39 |
+
# Return updates for all UI components
|
40 |
+
return (
|
41 |
+
dataset, # Update the state object
|
42 |
+
gr.update(maximum=len(dataset) - 1, value=0, visible=True, interactive=True), # Update slider
|
43 |
+
gr.update(value=sentence, visible=has_text), # Update and show/hide text box
|
44 |
+
*raw_audio_data, # Unpack audio data for all players
|
45 |
+
gr.update(value="", visible=False) # Hide any previous error messages
|
46 |
+
)
|
47 |
+
except Exception as e:
|
48 |
+
# If loading fails, show an error and hide the data components
|
49 |
+
error_message = f"Failed to load {subset}/{split}. Error: {e}"
|
50 |
+
empty_audio = (None, None)
|
51 |
+
return (
|
52 |
+
None, # Clear the state
|
53 |
+
gr.update(visible=False), # Hide slider
|
54 |
+
gr.update(visible=False), # Hide text box
|
55 |
+
*[empty_audio] * len(AUDIO_COLUMNS), # Clear all audio players
|
56 |
+
gr.update(value=error_message, visible=True) # Show the error message
|
57 |
+
)
|
58 |
+
|
59 |
|
60 |
+
def get_audio_row(dataset, index):
|
61 |
+
"""
|
62 |
+
This function is called ONLY when the slider changes.
|
63 |
+
It fetches a new row from the currently loaded dataset (held in the state).
|
64 |
+
"""
|
65 |
+
if dataset is None:
|
66 |
+
# This case handles when the initial load failed
|
67 |
+
return [None] * (1 + len(AUDIO_COLUMNS))
|
68 |
+
|
69 |
+
index = int(index)
|
70 |
+
sample = dataset[index]
|
71 |
+
|
72 |
+
has_text = TEXT_COLUMN in dataset.features
|
73 |
+
sentence = sample[TEXT_COLUMN] if has_text else None
|
74 |
|
|
|
|
|
75 |
raw_audio_data = [
|
76 |
(sample[col]['sampling_rate'], sample[col]['array']) for col in AUDIO_COLUMNS
|
77 |
]
|
78 |
|
79 |
return [sentence] + raw_audio_data
|
80 |
|
81 |
+
|
82 |
# --- Build the Gradio Interface ---
|
83 |
with gr.Blocks(css="footer {display: none !important}") as demo:
|
84 |
+
gr.Markdown("# Vibravox Multi-Sensor Explorer")
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
# This state object holds the currently loaded dataset in memory
|
87 |
+
# It's invisible to the user but accessible by our functions
|
88 |
+
loaded_dataset_state = gr.State(None)
|
89 |
|
90 |
+
# --- INPUT CONTROLS ---
|
91 |
+
with gr.Row():
|
92 |
+
subset_dropdown = gr.Dropdown(SUBSETS, value="speech_clean", label="Select Subset")
|
93 |
+
split_dropdown = gr.Dropdown(SPLITS, value="train", label="Select Split")
|
94 |
+
|
95 |
+
# --- UI COMPONENTS FOR DATA ---
|
96 |
+
error_box = gr.Textbox(visible=False, interactive=False, container=False)
|
97 |
+
sentence_output = gr.Textbox(label="Raw Text", interactive=False, container=False)
|
98 |
+
slider = gr.Slider(label="Select Data Row", container=False)
|
99 |
+
|
100 |
+
with gr.Row():
|
101 |
+
audio1 = gr.Audio(label="Headset Microphone")
|
102 |
+
audio2 = gr.Audio(label="Laryngophone (Throat Mic)")
|
103 |
+
audio3 = gr.Audio(label="Soft In-Ear Microphone")
|
104 |
+
with gr.Row():
|
105 |
+
audio4 = gr.Audio(label="Rigid In-Ear Microphone")
|
106 |
+
audio5 = gr.Audio(label="Forehead Accelerometer")
|
107 |
+
audio6 = gr.Audio(label="Temple Vibration Pickup")
|
108 |
|
109 |
+
# A list of all the output components for easier reference
|
110 |
+
all_outputs = [loaded_dataset_state, slider, sentence_output, audio1, audio2, audio3, audio4, audio5, audio6, error_box]
|
111 |
+
audio_outputs = [sentence_output, audio1, audio2, audio3, audio4, audio5, audio6]
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
# --- WIRING THE EVENT HANDLERS ---
|
114 |
+
|
115 |
+
# 1. When the app first loads, run the main function with default values
|
116 |
+
demo.load(
|
117 |
+
fn=load_and_update_all,
|
118 |
+
inputs=[subset_dropdown, split_dropdown],
|
119 |
+
outputs=all_outputs
|
120 |
+
)
|
121 |
+
|
122 |
+
# 2. When a dropdown value changes, re-run the main function
|
123 |
+
subset_dropdown.change(
|
124 |
+
fn=load_and_update_all,
|
125 |
+
inputs=[subset_dropdown, split_dropdown],
|
126 |
+
outputs=all_outputs
|
127 |
+
)
|
128 |
+
split_dropdown.change(
|
129 |
+
fn=load_and_update_all,
|
130 |
+
inputs=[subset_dropdown, split_dropdown],
|
131 |
+
outputs=all_outputs
|
132 |
+
)
|
133 |
|
134 |
+
# 3. When ONLY the slider changes, run the simpler function
|
135 |
+
slider.change(
|
136 |
+
fn=get_audio_row,
|
137 |
+
inputs=[loaded_dataset_state, slider],
|
138 |
+
outputs=audio_outputs
|
139 |
+
)
|
140 |
|
|
|
141 |
demo.launch()
|