Spaces:
Running
Running
File size: 16,030 Bytes
ff5aa27 56d7f1f 8762e3a db2039e 43820de ff5aa27 e6158a2 ff5aa27 56d7f1f f88b351 79d4ffa db2039e e18f92a 56d7f1f e6158a2 a0164a7 56d7f1f ff5aa27 56d7f1f 248f6d8 56d7f1f 7019901 56d7f1f 7019901 ff5aa27 56d7f1f 43820de 56d7f1f d2ebfa4 56d7f1f 248f6d8 56d7f1f 68d15b9 56d7f1f ed53f6a 167d34d ed53f6a 83a3dff d8dfcf0 56d7f1f d2ebfa4 56d7f1f 68d15b9 d8dfcf0 56d7f1f 83a3dff d2ebfa4 56d7f1f 248f6d8 56d7f1f 68d15b9 56d7f1f 167d34d 83a3dff d8dfcf0 56d7f1f d2ebfa4 56d7f1f 68d15b9 d8dfcf0 56d7f1f 83a3dff d2ebfa4 56d7f1f 248f6d8 56d7f1f 68d15b9 56d7f1f 83a3dff d8dfcf0 56d7f1f d2ebfa4 56d7f1f 68d15b9 d8dfcf0 56d7f1f 83a3dff d2ebfa4 56d7f1f d2ebfa4 56d7f1f e6158a2 56d7f1f 167d34d 56d7f1f d2ebfa4 56d7f1f 167d34d d2ebfa4 56d7f1f 440ffe1 56d7f1f 440ffe1 43820de 94f2c1b 56d7f1f db2039e 0825672 94f2c1b 0825672 f88b351 582adb3 56d7f1f 43820de 56d7f1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import gradio as gr
import os
import argparse
from modules.whisper_Inference import WhisperInference
from modules.faster_whisper_inference import FasterWhisperInference
from modules.nllb_inference import NLLBInference
from ui.htmls import *
from modules.youtube_manager import get_ytmetas
from modules.deepl_api import DeepLAPI
class App:
def __init__(self, args):
self.args = args
self.app = gr.Blocks(css=CSS, theme=self.args.theme)
self.whisper_inf = WhisperInference() if self.args.disable_faster_whisper else FasterWhisperInference()
if isinstance(self.whisper_inf, FasterWhisperInference):
print("Use Faster Whisper implementation")
else:
print("Use Open AI Whisper implementation")
print(f"Device \"{self.whisper_inf.device}\" is detected")
self.nllb_inf = NLLBInference()
self.deepl_api = DeepLAPI()
@staticmethod
def open_folder(folder_path: str):
if os.path.exists(folder_path):
os.system(f"start {folder_path}")
else:
print(f"The folder {folder_path} does not exist.")
@staticmethod
def on_change_models(model_size: str):
translatable_model = ["large", "large-v1", "large-v2", "large-v3"]
if model_size not in translatable_model:
return gr.Checkbox(visible=False, value=False, interactive=False)
else:
return gr.Checkbox(visible=True, value=False, label="Translate to English?", interactive=True)
def launch(self):
with self.app:
with gr.Row():
with gr.Column():
gr.Markdown(MARKDOWN, elem_id="md_project")
with gr.Tabs():
with gr.TabItem("File"): # tab1
with gr.Row():
input_file = gr.Files(type="filepath", label="Upload File here")
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v3",
label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_file_format = gr.Dropdown(["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename", interactive=True)
with gr.Accordion("Advanced_Parameters", open=False):
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types, value=self.whisper_inf.current_compute_type, interactive=True)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=4)
files_subtitles = gr.Files(label="Downloadable output file", scale=4, interactive=False)
btn_openfolder = gr.Button('π', scale=1)
params = [input_file, dd_model, dd_lang, dd_file_format, cb_translate, cb_timestamp]
advanced_params = [nb_beam_size, nb_log_prob_threshold, nb_no_speech_threshold, dd_compute_type]
btn_run.click(fn=self.whisper_inf.transcribe_file,
inputs=params + advanced_params,
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("Youtube"): # tab2
with gr.Row():
tb_youtubelink = gr.Textbox(label="Youtube Link")
with gr.Row(equal_height=True):
with gr.Column():
img_thumbnail = gr.Image(label="Youtube Thumbnail")
with gr.Column():
tb_title = gr.Label(label="Youtube Title")
tb_description = gr.Textbox(label="Youtube Description", max_lines=15)
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v3",
label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_file_format = gr.Dropdown(choices=["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
interactive=True)
with gr.Accordion("Advanced_Parameters", open=False):
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types, value=self.whisper_inf.current_compute_type, interactive=True)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=4)
files_subtitles = gr.Files(label="Downloadable output file", scale=4)
btn_openfolder = gr.Button('π', scale=1)
params = [tb_youtubelink, dd_model, dd_lang, dd_file_format, cb_translate, cb_timestamp]
advanced_params = [nb_beam_size, nb_log_prob_threshold, nb_no_speech_threshold, dd_compute_type]
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
inputs=params + advanced_params,
outputs=[tb_indicator, files_subtitles])
tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
outputs=[img_thumbnail, tb_title, tb_description])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("Mic"): # tab3
with gr.Row():
mic_input = gr.Microphone(label="Record with Mic", type="filepath", interactive=True)
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v3",
label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_file_format = gr.Dropdown(["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Accordion("Advanced_Parameters", open=False):
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types, value=self.whisper_inf.current_compute_type, interactive=True)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=4)
files_subtitles = gr.Files(label="Downloadable output file", scale=4)
btn_openfolder = gr.Button('π', scale=1)
params = [mic_input, dd_model, dd_lang, dd_file_format, cb_translate]
advanced_params = [nb_beam_size, nb_log_prob_threshold, nb_no_speech_threshold, dd_compute_type]
btn_run.click(fn=self.whisper_inf.transcribe_mic,
inputs=params + advanced_params,
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder("outputs"), inputs=None, outputs=None)
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("T2T Translation"): # tab 4
with gr.Row():
file_subs = gr.Files(type="filepath", label="Upload Subtitle Files to translate here",
file_types=['.vtt', '.srt'])
with gr.TabItem("DeepL API"): # sub tab1
with gr.Row():
tb_authkey = gr.Textbox(label="Your Auth Key (API KEY)",
value="")
with gr.Row():
dd_deepl_sourcelang = gr.Dropdown(label="Source Language", value="Automatic Detection",
choices=list(
self.deepl_api.available_source_langs.keys()))
dd_deepl_targetlang = gr.Dropdown(label="Target Language", value="English",
choices=list(
self.deepl_api.available_target_langs.keys()))
with gr.Row():
cb_deepl_ispro = gr.Checkbox(label="Pro User?", value=False)
with gr.Row():
btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=4)
files_subtitles = gr.Files(label="Downloadable output file", scale=4)
btn_openfolder = gr.Button('π', scale=1)
btn_run.click(fn=self.deepl_api.translate_deepl,
inputs=[tb_authkey, file_subs, dd_deepl_sourcelang, dd_deepl_targetlang,
cb_deepl_ispro],
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder(os.path.join("outputs", "translations")),
inputs=None,
outputs=None)
with gr.TabItem("NLLB"): # sub tab2
with gr.Row():
dd_nllb_model = gr.Dropdown(label="Model", value=self.nllb_inf.default_model_size,
choices=self.nllb_inf.available_models)
dd_nllb_sourcelang = gr.Dropdown(label="Source Language",
choices=self.nllb_inf.available_source_langs)
dd_nllb_targetlang = gr.Dropdown(label="Target Language",
choices=self.nllb_inf.available_target_langs)
with gr.Row():
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
interactive=True)
with gr.Row():
btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=4)
files_subtitles = gr.Files(label="Downloadable output file", scale=4)
btn_openfolder = gr.Button('π', scale=1)
with gr.Column():
md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table")
btn_run.click(fn=self.nllb_inf.translate_file,
inputs=[file_subs, dd_nllb_model, dd_nllb_sourcelang, dd_nllb_targetlang, cb_timestamp],
outputs=[tb_indicator, files_subtitles])
btn_openfolder.click(fn=lambda: self.open_folder(os.path.join("outputs", "translations")),
inputs=None,
outputs=None)
# Launch the app with optional gradio settings
launch_args = {}
if self.args.share:
launch_args['share'] = self.args.share
if self.args.server_name:
launch_args['server_name'] = self.args.server_name
if self.args.server_port:
launch_args['server_port'] = self.args.server_port
if self.args.username and self.args.password:
launch_args['auth'] = (self.args.username, self.args.password)
self.app.queue(api_open=False).launch(**launch_args)
# Create the parser for command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--disable_faster_whisper', type=bool, default=False, nargs='?', const=True, help='Disable the faster_whisper implementation. faster_whipser is implemented by https://github.com/guillaumekln/faster-whisper')
parser.add_argument('--share', type=bool, default=False, nargs='?', const=True, help='Gradio share value')
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
parser.add_argument('--username', type=str, default=None, help='Gradio authentication username')
parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
parser.add_argument('--colab', type=bool, default=False, nargs='?', const=True, help='Is colab user or not')
_args = parser.parse_args()
if __name__ == "__main__":
app = App(args=_args)
app.launch()
|