Spaces:
Running
Running
File size: 14,060 Bytes
ff5aa27 960f111 ff5aa27 cdb03d3 960f111 ff5aa27 960f111 ff5aa27 56d7f1f ef11e7e 56d7f1f 11a447c 56d7f1f 248f6d8 dfe2ca6 1e64bcc 64e6134 ff5aa27 64e6134 94e3a48 42af183 b17cfc2 e18f92a d8dfcf0 25c9e51 ff5aa27 56d7f1f b17cfc2 ef11e7e 167d34d b17cfc2 56d7f1f b17cfc2 56d7f1f ef11e7e b17cfc2 167d34d b17cfc2 56d7f1f b17cfc2 1e64bcc 1f9180b b17cfc2 1f9180b f9bd9ba b17cfc2 960f111 b17cfc2 f9bd9ba b17cfc2 f9bd9ba 1f9180b 960f111 ef11e7e 960f111 b17cfc2 f9bd9ba 960f111 f9bd9ba 960f111 f9bd9ba b17cfc2 1f9180b b17cfc2 f9bd9ba 960f111 f9bd9ba 64e6134 b17cfc2 ff5aa27 56d7f1f b17cfc2 ef11e7e 167d34d b17cfc2 56d7f1f b17cfc2 ef11e7e b17cfc2 167d34d 56d7f1f b17cfc2 1f9180b b17cfc2 56d7f1f f9bd9ba b17cfc2 f9bd9ba 8d692ce b17cfc2 1e64bcc 8d692ce f9bd9ba b17cfc2 960f111 ef11e7e 960f111 b17cfc2 f9bd9ba 960f111 f9bd9ba 83a3dff b17cfc2 83a3dff 1e64bcc 56d7f1f b17cfc2 ef11e7e b17cfc2 56d7f1f b17cfc2 56d7f1f ef11e7e b17cfc2 56d7f1f b17cfc2 1e64bcc 1f9180b b17cfc2 1f9180b f9bd9ba b17cfc2 f9bd9ba ff5aa27 b17cfc2 960f111 ef11e7e 960f111 ff5aa27 b17cfc2 f9bd9ba 960f111 f9bd9ba 64e6134 b17cfc2 960f111 b17cfc2 cdb03d3 960f111 b17cfc2 960f111 b17cfc2 960f111 b17cfc2 960f111 cdb03d3 960f111 ca9094f b17cfc2 960f111 b17cfc2 960f111 b17cfc2 e3a6426 3a1a0a3 3aeef88 960f111 b17cfc2 960f111 b17cfc2 960f111 b17cfc2 25c9e51 b17cfc2 960f111 ef11e7e 960f111 b17cfc2 960f111 ef11e7e 1f9180b ef11e7e 1f9180b ef11e7e 1f9180b 960f111 b17cfc2 960f111 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import whisper
import gradio as gr
import time
import os
from typing import BinaryIO, Union, Tuple, List
import numpy as np
from datetime import datetime
import torch
from .base_interface import BaseInterface
from modules.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
from modules.youtube_manager import get_ytdata, get_ytaudio
from modules.whisper_parameter import *
DEFAULT_MODEL_SIZE = "large-v3"
class WhisperInference(BaseInterface):
def __init__(self):
super().__init__()
self.current_model_size = None
self.model = None
self.available_models = whisper.available_models()
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
self.translatable_model = ["large", "large-v1", "large-v2", "large-v3"]
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.available_compute_types = ["float16", "float32"]
self.current_compute_type = "float16" if self.device == "cuda" else "float32"
self.model_dir = os.path.join("models", "Whisper")
def transcribe_file(self,
files: list,
file_format: str,
add_timestamp: bool,
progress=gr.Progress(),
*whisper_params
) -> list:
"""
Write subtitle file from Files
Parameters
----------
files: list
List of files to transcribe from gr.Files()
file_format: str
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the subtitle filename.
progress: gr.Progress
Indicator to show progress directly in gradio.
*whisper_params: tuple
Gradio components related to Whisper. see whisper_data_class.py for details.
Returns
----------
result_str:
Result of transcription to return to gr.Textbox()
result_file_path:
Output file path to return to gr.Files()
"""
try:
files_info = {}
for file in files:
progress(0, desc="Loading Audio..")
audio = whisper.load_audio(file.name)
result, elapsed_time = self.transcribe(audio,
progress,
*whisper_params)
progress(1, desc="Completed!")
file_name, file_ext = os.path.splitext(os.path.basename(file.name))
file_name = safe_filename(file_name)
subtitle, file_path = self.generate_and_write_file(
file_name=file_name,
transcribed_segments=result,
add_timestamp=add_timestamp,
file_format=file_format
)
files_info[file_name] = {"subtitle": subtitle, "elapsed_time": elapsed_time, "path": file_path}
total_result = ''
total_time = 0
for file_name, info in files_info.items():
total_result += '------------------------------------\n'
total_result += f'{file_name}\n\n'
total_result += f"{info['subtitle']}"
total_time += info["elapsed_time"]
result_str = f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"
result_file_path = [info['path'] for info in files_info.values()]
return [result_str, result_file_path]
except Exception as e:
print(f"Error transcribing file: {str(e)}")
finally:
self.release_cuda_memory()
self.remove_input_files([file.name for file in files])
def transcribe_youtube(self,
youtube_link: str,
file_format: str,
add_timestamp: bool,
progress=gr.Progress(),
*whisper_params) -> list:
"""
Write subtitle file from Youtube
Parameters
----------
youtube_link: str
URL of the Youtube video to transcribe from gr.Textbox()
file_format: str
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
progress: gr.Progress
Indicator to show progress directly in gradio.
*whisper_params: tuple
Gradio components related to Whisper. see whisper_data_class.py for details.
Returns
----------
result_str:
Result of transcription to return to gr.Textbox()
result_file_path:
Output file path to return to gr.Files()
"""
try:
progress(0, desc="Loading Audio from Youtube..")
yt = get_ytdata(youtube_link)
audio = whisper.load_audio(get_ytaudio(yt))
result, elapsed_time = self.transcribe(audio,
progress,
*whisper_params)
progress(1, desc="Completed!")
file_name = safe_filename(yt.title)
subtitle, result_file_path = self.generate_and_write_file(
file_name=file_name,
transcribed_segments=result,
add_timestamp=add_timestamp,
file_format=file_format
)
result_str = f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
return [result_str, result_file_path]
except Exception as e:
print(f"Error transcribing youtube video: {str(e)}")
finally:
try:
if 'yt' not in locals():
yt = get_ytdata(youtube_link)
file_path = get_ytaudio(yt)
else:
file_path = get_ytaudio(yt)
self.release_cuda_memory()
self.remove_input_files([file_path])
except Exception as cleanup_error:
pass
def transcribe_mic(self,
mic_audio: str,
file_format: str,
progress=gr.Progress(),
*whisper_params) -> list:
"""
Write subtitle file from microphone
Parameters
----------
mic_audio: str
Audio file path from gr.Microphone()
file_format: str
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
progress: gr.Progress
Indicator to show progress directly in gradio.
*whisper_params: tuple
Gradio components related to Whisper. see whisper_data_class.py for details.
Returns
----------
result_str:
Result of transcription to return to gr.Textbox()
result_file_path:
Output file path to return to gr.Files()
"""
try:
progress(0, desc="Loading Audio..")
result, elapsed_time = self.transcribe(
mic_audio,
progress,
*whisper_params,
)
progress(1, desc="Completed!")
subtitle, result_file_path = self.generate_and_write_file(
file_name="Mic",
transcribed_segments=result,
add_timestamp=True,
file_format=file_format
)
result_str = f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
return [result_str, result_file_path]
except Exception as e:
print(f"Error transcribing mic: {str(e)}")
finally:
self.release_cuda_memory()
self.remove_input_files([mic_audio])
def transcribe(self,
audio: Union[str, np.ndarray, torch.Tensor],
progress: gr.Progress,
*whisper_params,
) -> Tuple[List[dict], float]:
"""
transcribe method for faster-whisper.
Parameters
----------
audio: Union[str, BinaryIO, np.ndarray]
Audio path or file binary or Audio numpy array
progress: gr.Progress
Indicator to show progress directly in gradio.
*whisper_params: tuple
Gradio components related to Whisper. see whisper_data_class.py for details.
Returns
----------
segments_result: List[dict]
list of dicts that includes start, end timestamps and transcribed text
elapsed_time: float
elapsed time for transcription
"""
start_time = time.time()
params = WhisperValues(*whisper_params)
if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
self.update_model(params.model_size, params.compute_type, progress)
if params.lang == "Automatic Detection":
params.lang = None
def progress_callback(progress_value):
progress(progress_value, desc="Transcribing..")
segments_result = self.model.transcribe(audio=audio,
language=params.lang,
verbose=False,
beam_size=params.beam_size,
logprob_threshold=params.log_prob_threshold,
no_speech_threshold=params.no_speech_threshold,
task="translate" if params.is_translate and self.current_model_size in self.translatable_model else "transcribe",
fp16=True if params.compute_type == "float16" else False,
best_of=params.best_of,
patience=params.patience,
temperature=params.temperature,
compression_ratio_threshold=params.compression_ratio_threshold,
progress_callback=progress_callback,)["segments"]
elapsed_time = time.time() - start_time
return segments_result, elapsed_time
def update_model(self,
model_size: str,
compute_type: str,
progress: gr.Progress,
):
"""
Update current model setting
Parameters
----------
model_size: str
Size of whisper model
compute_type: str
Compute type for transcription.
see more info : https://opennmt.net/CTranslate2/quantization.html
progress: gr.Progress
Indicator to show progress directly in gradio.
"""
progress(0, desc="Initializing Model..")
self.current_compute_type = compute_type
self.current_model_size = model_size
self.model = whisper.load_model(
name=model_size,
device=self.device,
download_root=self.model_dir
)
@staticmethod
def generate_and_write_file(file_name: str,
transcribed_segments: list,
add_timestamp: bool,
file_format: str,
) -> str:
"""
Writes subtitle file
Parameters
----------
file_name: str
Output file name
transcribed_segments: list
Text segments transcribed from audio
add_timestamp: bool
Determines whether to add a timestamp to the end of the filename.
file_format: str
File format to write. Supported formats: [SRT, WebVTT, txt]
Returns
----------
content: str
Result of the transcription
output_path: str
output file path
"""
timestamp = datetime.now().strftime("%m%d%H%M%S")
if add_timestamp:
output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
else:
output_path = os.path.join("outputs", f"{file_name}")
if file_format == "SRT":
content = get_srt(transcribed_segments)
output_path += '.srt'
write_file(content, output_path)
elif file_format == "WebVTT":
content = get_vtt(transcribed_segments)
output_path += '.vtt'
write_file(content, output_path)
elif file_format == "txt":
content = get_txt(transcribed_segments)
output_path += '.txt'
write_file(content, output_path)
return content, output_path
@staticmethod
def format_time(elapsed_time: float) -> str:
"""
Get {hours} {minutes} {seconds} time format string
Parameters
----------
elapsed_time: str
Elapsed time for transcription
Returns
----------
Time format string
"""
hours, rem = divmod(elapsed_time, 3600)
minutes, seconds = divmod(rem, 60)
time_str = ""
if hours:
time_str += f"{hours} hours "
if minutes:
time_str += f"{minutes} minutes "
seconds = round(seconds)
time_str += f"{seconds} seconds"
return time_str.strip()
|