Spaces:
Running
Running
File size: 32,418 Bytes
56d7f1f 25f2bab 43820de 25f2bab b065a65 ff5aa27 56d7f1f f88b351 6065501 fd67237 e18f92a 52157d4 a0164a7 fd67237 07647e1 fd67237 6f97cc2 1c725ac 8a27aeb 48dc726 1c725ac 6f97cc2 1c725ac 8a27aeb 48dc726 1c725ac 8f9e3e1 1c725ac 8a27aeb 48dc726 1c725ac fd67237 1c725ac 8a27aeb 48dc726 1c725ac fd67237 56d7f1f ff5aa27 56d7f1f 248f6d8 56d7f1f 7019901 56d7f1f 7019901 ff5aa27 56d7f1f 43820de 56d7f1f d2ebfa4 56d7f1f 0fdaf30 56d7f1f 68d15b9 56d7f1f ed53f6a 167d34d ed53f6a 48dc726 83a3dff d8dfcf0 e3a6426 c661883 c3b532a 3a1a0a3 3aeef88 633d4ca 171d562 709f1c6 171d562 48dc726 8615b10 1c42a22 48dc726 171d562 56d7f1f 4fee6f0 63d0035 56d7f1f b065a65 171d562 4e696d8 48dc726 074b1fc 2514ff4 7cc2d4f 56d7f1f 0fdaf30 56d7f1f 68d15b9 56d7f1f 167d34d 48dc726 83a3dff d8dfcf0 e3a6426 c661883 c3b532a 3a1a0a3 3aeef88 633d4ca 171d562 709f1c6 171d562 48dc726 8615b10 1c42a22 48dc726 171d562 56d7f1f 4fee6f0 63d0035 56d7f1f b065a65 171d562 4e696d8 48dc726 171d562 56d7f1f 227c267 d2ebfa4 56d7f1f 0fdaf30 56d7f1f 68d15b9 56d7f1f 48dc726 83a3dff d8dfcf0 e3a6426 c661883 c3b532a 3a1a0a3 633d4ca 171d562 709f1c6 171d562 48dc726 8615b10 1c42a22 171d562 56d7f1f 4fee6f0 63d0035 56d7f1f b065a65 171d562 4e696d8 48dc726 171d562 56d7f1f 227c267 d2ebfa4 56d7f1f d2ebfa4 56d7f1f e6158a2 63d0035 e6158a2 56d7f1f c603464 56d7f1f 167d34d 56d7f1f 63d0035 56d7f1f 167d34d d2ebfa4 440ffe1 56d7f1f 440ffe1 1aa16bb 9953f5b 0cd08e6 440ffe1 43820de 94f2c1b 56d7f1f c2b4fd0 0825672 94f2c1b 1aa16bb 0825672 f88b351 582adb3 135355d 25c9e51 6f97cc2 48dc726 cf6977b 8a27aeb 56d7f1f 43820de 56d7f1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import os
import argparse
from modules.whisper.whisper_Inference import WhisperInference
from modules.whisper.faster_whisper_inference import FasterWhisperInference
from modules.whisper.insanely_fast_whisper_inference import InsanelyFastWhisperInference
from modules.translation.nllb_inference import NLLBInference
from ui.htmls import *
from modules.utils.youtube_manager import get_ytmetas
from modules.translation.deepl_api import DeepLAPI
from modules.whisper.whisper_parameter import *
class App:
def __init__(self, args):
self.args = args
self.app = gr.Blocks(css=CSS, theme=self.args.theme)
self.whisper_inf = FasterWhisperInference(
model_dir=self.args.faster_whisper_model_dir,
output_dir=self.args.output_dir,
args=self.args
)
print(f"Use \"{self.args.whisper_type}\" implementation")
print(f"Device \"{self.whisper_inf.device}\" is detected")
self.nllb_inf = NLLBInference(
model_dir=self.args.nllb_model_dir,
output_dir=self.args.output_dir
)
self.deepl_api = DeepLAPI(
output_dir=self.args.output_dir
)
def init_whisper(self):
# Temporal fix of the issue : https://github.com/jhj0517/Whisper-WebUI/issues/144
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
whisper_type = self.args.whisper_type.lower().strip()
if whisper_type in ["faster_whisper", "faster-whisper", "fasterwhisper"]:
whisper_inf = FasterWhisperInference(
model_dir=self.args.faster_whisper_model_dir,
output_dir=self.args.output_dir,
args=self.args
)
elif whisper_type in ["whisper"]:
whisper_inf = WhisperInference(
model_dir=self.args.whisper_model_dir,
output_dir=self.args.output_dir,
args=self.args
)
elif whisper_type in ["insanely_fast_whisper", "insanely-fast-whisper", "insanelyfastwhisper",
"insanely_faster_whisper", "insanely-faster-whisper", "insanelyfasterwhisper"]:
whisper_inf = InsanelyFastWhisperInference(
model_dir=self.args.insanely_fast_whisper_model_dir,
output_dir=self.args.output_dir,
args=self.args
)
else:
whisper_inf = FasterWhisperInference(
model_dir=self.args.faster_whisper_model_dir,
output_dir=self.args.output_dir,
args=self.args
)
return whisper_inf
@staticmethod
def open_folder(folder_path: str):
if os.path.exists(folder_path):
os.system(f"start {folder_path}")
else:
print(f"The folder {folder_path} does not exist.")
@staticmethod
def on_change_models(model_size: str):
translatable_model = ["large", "large-v1", "large-v2", "large-v3"]
if model_size not in translatable_model:
return gr.Checkbox(visible=False, value=False, interactive=False)
else:
return gr.Checkbox(visible=True, value=False, label="Translate to English?", interactive=True)
def launch(self):
with self.app:
with gr.Row():
with gr.Column():
gr.Markdown(MARKDOWN, elem_id="md_project")
with gr.Tabs():
with gr.TabItem("File"): # tab1
with gr.Row():
input_file = gr.Files(type="filepath", label="Upload File here")
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v2",
label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_file_format = gr.Dropdown(["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename", interactive=True)
with gr.Accordion("Advanced Parameters", open=False):
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types, value=self.whisper_inf.current_compute_type, interactive=True)
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True, interactive=True)
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0, interactive=True)
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=2.4, interactive=True)
with gr.Accordion("VAD", open=False):
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5, info="Lower it to be more sensitive to small sounds.")
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024)
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
with gr.Accordion("Diarization", open=False):
cb_diarize = gr.Checkbox(label="Enable Diarization")
tb_hf_token = gr.Text(label="HuggingFace Token", value="",
info="This is only needed the first time you download the model. If you already have models, you don't need to enter. "
"To download the model, you must manually go to \"https://huggingface.co/pyannote/speaker-diarization-3.1\" and agree to their requirement.")
dd_diarization_device = gr.Dropdown(label="Device", choices=self.whisper_inf.diarizer.get_available_device(), value=self.whisper_inf.diarizer.get_device())
with gr.Accordion("Insanely Fast Whisper Parameters", open=False, visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=6)
files_subtitles = gr.Files(label="Downloadable output file", scale=3, interactive=False)
params = [input_file, dd_file_format, cb_timestamp]
whisper_params = WhisperParameters(model_size=dd_model,
lang=dd_lang,
is_translate=cb_translate,
beam_size=nb_beam_size,
log_prob_threshold=nb_log_prob_threshold,
no_speech_threshold=nb_no_speech_threshold,
compute_type=dd_compute_type,
best_of=nb_best_of,
patience=nb_patience,
condition_on_previous_text=cb_condition_on_previous_text,
initial_prompt=tb_initial_prompt,
temperature=sd_temperature,
compression_ratio_threshold=nb_compression_ratio_threshold,
vad_filter=cb_vad_filter,
threshold=sd_threshold,
min_speech_duration_ms=nb_min_speech_duration_ms,
max_speech_duration_s=nb_max_speech_duration_s,
min_silence_duration_ms=nb_min_silence_duration_ms,
window_size_sample=nb_window_size_sample,
speech_pad_ms=nb_speech_pad_ms,
chunk_length_s=nb_chunk_length_s,
batch_size=nb_batch_size,
is_diarize=cb_diarize,
hf_token=tb_hf_token,
diarization_device=dd_diarization_device)
# btn_run.click(fn=self.whisper_inf.transcribe_file,
# inputs=params + whisper_params.as_list(),
# outputs=[tb_indicator, files_subtitles])
btn_run.click(fn=self.whisper_inf.test, inputs=None, outputs=None)
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("Youtube"): # tab2
with gr.Row():
tb_youtubelink = gr.Textbox(label="Youtube Link")
with gr.Row(equal_height=True):
with gr.Column():
img_thumbnail = gr.Image(label="Youtube Thumbnail")
with gr.Column():
tb_title = gr.Label(label="Youtube Title")
tb_description = gr.Textbox(label="Youtube Description", max_lines=15)
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v2",
label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_file_format = gr.Dropdown(choices=["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
interactive=True)
with gr.Accordion("Advanced Parameters", open=False):
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types, value=self.whisper_inf.current_compute_type, interactive=True)
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True, interactive=True)
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0, interactive=True)
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=2.4, interactive=True)
with gr.Accordion("VAD", open=False):
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5, info="Lower it to be more sensitive to small sounds.")
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024)
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
with gr.Accordion("Diarization", open=False):
cb_diarize = gr.Checkbox(label="Enable Diarization")
tb_hf_token = gr.Text(label="HuggingFace Token", value="",
info="This is only needed the first time you download the model. If you already have models, you don't need to enter. "
"To download the model, you must manually go to \"https://huggingface.co/pyannote/speaker-diarization-3.1\" and agree to their requirement.")
dd_diarization_device = gr.Dropdown(label="Device", choices=self.whisper_inf.diarizer.get_available_device(), value=self.whisper_inf.diarizer.get_device())
with gr.Accordion("Insanely Fast Whisper Parameters", open=False,
visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=6)
files_subtitles = gr.Files(label="Downloadable output file", scale=3)
params = [tb_youtubelink, dd_file_format, cb_timestamp]
whisper_params = WhisperParameters(model_size=dd_model,
lang=dd_lang,
is_translate=cb_translate,
beam_size=nb_beam_size,
log_prob_threshold=nb_log_prob_threshold,
no_speech_threshold=nb_no_speech_threshold,
compute_type=dd_compute_type,
best_of=nb_best_of,
patience=nb_patience,
condition_on_previous_text=cb_condition_on_previous_text,
initial_prompt=tb_initial_prompt,
temperature=sd_temperature,
compression_ratio_threshold=nb_compression_ratio_threshold,
vad_filter=cb_vad_filter,
threshold=sd_threshold,
min_speech_duration_ms=nb_min_speech_duration_ms,
max_speech_duration_s=nb_max_speech_duration_s,
min_silence_duration_ms=nb_min_silence_duration_ms,
window_size_sample=nb_window_size_sample,
speech_pad_ms=nb_speech_pad_ms,
chunk_length_s=nb_chunk_length_s,
batch_size=nb_batch_size,
is_diarize=cb_diarize,
hf_token=tb_hf_token,
diarization_device=dd_diarization_device)
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
inputs=params + whisper_params.as_list(),
outputs=[tb_indicator, files_subtitles])
tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
outputs=[img_thumbnail, tb_title, tb_description])
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("Mic"): # tab3
with gr.Row():
mic_input = gr.Microphone(label="Record with Mic", type="filepath", interactive=True)
with gr.Row():
dd_model = gr.Dropdown(choices=self.whisper_inf.available_models, value="large-v2",
label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + self.whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_file_format = gr.Dropdown(["SRT", "WebVTT", "txt"], value="SRT", label="File Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Accordion("Advanced Parameters", open=False):
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0, interactive=True)
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
dd_compute_type = gr.Dropdown(label="Compute Type", choices=self.whisper_inf.available_compute_types, value=self.whisper_inf.current_compute_type, interactive=True)
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True, interactive=True)
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0, interactive=True)
with gr.Accordion("VAD", open=False):
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold", value=0.5, info="Lower it to be more sensitive to small sounds.")
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0, value=250)
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0, value=2000)
nb_window_size_sample = gr.Number(label="Window Size (samples)", precision=0, value=1024)
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
with gr.Accordion("Diarization", open=False):
cb_diarize = gr.Checkbox(label="Enable Diarization")
tb_hf_token = gr.Text(label="HuggingFace Token", value="",
info="This is only needed the first time you download the model. If you already have models, you don't need to enter. "
"To download the model, you must manually go to \"https://huggingface.co/pyannote/speaker-diarization-3.1\" and agree to their requirement.")
dd_diarization_device = gr.Dropdown(label="Device",
choices=self.whisper_inf.diarizer.get_available_device(),
value=self.whisper_inf.diarizer.get_device())
with gr.Accordion("Insanely Fast Whisper Parameters", open=False,
visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=6)
files_subtitles = gr.Files(label="Downloadable output file", scale=3)
params = [mic_input, dd_file_format]
whisper_params = WhisperParameters(model_size=dd_model,
lang=dd_lang,
is_translate=cb_translate,
beam_size=nb_beam_size,
log_prob_threshold=nb_log_prob_threshold,
no_speech_threshold=nb_no_speech_threshold,
compute_type=dd_compute_type,
best_of=nb_best_of,
patience=nb_patience,
condition_on_previous_text=cb_condition_on_previous_text,
initial_prompt=tb_initial_prompt,
temperature=sd_temperature,
compression_ratio_threshold=nb_compression_ratio_threshold,
vad_filter=cb_vad_filter,
threshold=sd_threshold,
min_speech_duration_ms=nb_min_speech_duration_ms,
max_speech_duration_s=nb_max_speech_duration_s,
min_silence_duration_ms=nb_min_silence_duration_ms,
window_size_sample=nb_window_size_sample,
speech_pad_ms=nb_speech_pad_ms,
chunk_length_s=nb_chunk_length_s,
batch_size=nb_batch_size,
is_diarize=cb_diarize,
hf_token=tb_hf_token,
diarization_device=dd_diarization_device)
btn_run.click(fn=self.whisper_inf.transcribe_mic,
inputs=params + whisper_params.as_list(),
outputs=[tb_indicator, files_subtitles])
dd_model.change(fn=self.on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("T2T Translation"): # tab 4
with gr.Row():
file_subs = gr.Files(type="filepath", label="Upload Subtitle Files to translate here",
file_types=['.vtt', '.srt'])
with gr.TabItem("DeepL API"): # sub tab1
with gr.Row():
tb_authkey = gr.Textbox(label="Your Auth Key (API KEY)",
value="")
with gr.Row():
dd_deepl_sourcelang = gr.Dropdown(label="Source Language", value="Automatic Detection",
choices=list(
self.deepl_api.available_source_langs.keys()))
dd_deepl_targetlang = gr.Dropdown(label="Target Language", value="English",
choices=list(
self.deepl_api.available_target_langs.keys()))
with gr.Row():
cb_deepl_ispro = gr.Checkbox(label="Pro User?", value=False)
with gr.Row():
btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=5)
files_subtitles = gr.Files(label="Downloadable output file", scale=3)
btn_run.click(fn=self.deepl_api.translate_deepl,
inputs=[tb_authkey, file_subs, dd_deepl_sourcelang, dd_deepl_targetlang,
cb_deepl_ispro],
outputs=[tb_indicator, files_subtitles])
with gr.TabItem("NLLB"): # sub tab2
with gr.Row():
dd_nllb_model = gr.Dropdown(label="Model", value="facebook/nllb-200-1.3B",
choices=self.nllb_inf.available_models)
dd_nllb_sourcelang = gr.Dropdown(label="Source Language",
choices=self.nllb_inf.available_source_langs)
dd_nllb_targetlang = gr.Dropdown(label="Target Language",
choices=self.nllb_inf.available_target_langs)
with gr.Row():
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
interactive=True)
with gr.Row():
btn_run = gr.Button("TRANSLATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output", scale=5)
files_subtitles = gr.Files(label="Downloadable output file", scale=3)
with gr.Column():
md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table")
btn_run.click(fn=self.nllb_inf.translate_file,
inputs=[file_subs, dd_nllb_model, dd_nllb_sourcelang, dd_nllb_targetlang, cb_timestamp],
outputs=[tb_indicator, files_subtitles])
# Launch the app with optional gradio settings
launch_args = {}
if self.args.share:
launch_args['share'] = self.args.share
if self.args.server_name:
launch_args['server_name'] = self.args.server_name
if self.args.server_port:
launch_args['server_port'] = self.args.server_port
if self.args.username and self.args.password:
launch_args['auth'] = (self.args.username, self.args.password)
if self.args.root_path:
launch_args['root_path'] = self.args.root_path
launch_args['inbrowser'] = True
self.app.queue(api_open=False).launch(**launch_args)
# Create the parser for command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--whisper_type', type=str, default="faster-whisper", help='A type of the whisper implementation between: ["whisper", "faster-whisper", "insanely-fast-whisper"]')
parser.add_argument('--share', type=bool, default=False, nargs='?', const=True, help='Gradio share value')
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
parser.add_argument('--root_path', type=str, default=None, help='Gradio root path')
parser.add_argument('--username', type=str, default=None, help='Gradio authentication username')
parser.add_argument('--password', type=str, default=None, help='Gradio authentication password')
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
parser.add_argument('--colab', type=bool, default=False, nargs='?', const=True, help='Is colab user or not')
parser.add_argument('--api_open', type=bool, default=False, nargs='?', const=True, help='enable api or not')
parser.add_argument('--whisper_model_dir', type=str, default=os.path.join("models", "Whisper"), help='Directory path of the whisper model')
parser.add_argument('--faster_whisper_model_dir', type=str, default=os.path.join("models", "Whisper", "faster-whisper"), help='Directory path of the faster-whisper model')
parser.add_argument('--insanely_fast_whisper_model_dir', type=str, default=os.path.join("models", "Whisper", "insanely-fast-whisper"), help='Directory path of the insanely-fast-whisper model')
parser.add_argument('--diarization_model_dir', type=str, default=os.path.join("models", "Diarization"), help='Directory path of the diarization model')
parser.add_argument('--nllb_model_dir', type=str, default=os.path.join("models", "NLLB"), help='Directory path of the Facebook NLLB model')
parser.add_argument('--output_dir', type=str, default=os.path.join("outputs"), help='Directory path of the outputs')
_args = parser.parse_args()
if __name__ == "__main__":
app = App(args=_args)
app.launch()
|