Spaces:
Running
Running
jhj0517
commited on
Commit
·
8c8001e
1
Parent(s):
eab33e7
Add dedicated bgm separation app
Browse files- app.py +24 -13
- modules/uvr/music_separator.py +47 -5
- modules/whisper/whisper_base.py +1 -1
app.py
CHANGED
@@ -343,6 +343,7 @@ class App:
|
|
343 |
btn_openfolder.click(fn=lambda: self.open_folder(os.path.join(self.args.output_dir, "translations")),
|
344 |
inputs=None,
|
345 |
outputs=None)
|
|
|
346 |
with gr.TabItem("BGM Separation"):
|
347 |
files_audio = gr.Files(type="filepath", label="Upload Audio Files to separate background music")
|
348 |
dd_uvr_device = gr.Dropdown(label="Device", value=self.whisper_inf.music_separator.device,
|
@@ -351,21 +352,30 @@ class App:
|
|
351 |
choices=self.whisper_inf.music_separator.available_models)
|
352 |
nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"], precision=0)
|
353 |
cb_uvr_save_file = gr.Checkbox(label="Save separated files to output",
|
354 |
-
value=
|
355 |
btn_run = gr.Button("SEPARATE BACKGROUND MUSIC", variant="primary")
|
356 |
-
with gr.
|
357 |
-
with gr.
|
358 |
-
ad_instrumental = gr.Audio(label="Instrumental")
|
359 |
-
|
360 |
-
with gr.
|
361 |
-
|
|
|
362 |
|
363 |
-
btn_run.click(fn=self.whisper_inf.music_separator.
|
364 |
-
inputs=[files_audio,
|
|
|
365 |
outputs=[ad_instrumental, ad_vocals])
|
366 |
-
|
367 |
-
|
368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
|
370 |
# Launch the app with optional gradio settings
|
371 |
args = self.args
|
@@ -386,7 +396,8 @@ class App:
|
|
386 |
if os.path.exists(folder_path):
|
387 |
os.system(f"start {folder_path}")
|
388 |
else:
|
389 |
-
|
|
|
390 |
|
391 |
@staticmethod
|
392 |
def on_change_models(model_size: str):
|
|
|
343 |
btn_openfolder.click(fn=lambda: self.open_folder(os.path.join(self.args.output_dir, "translations")),
|
344 |
inputs=None,
|
345 |
outputs=None)
|
346 |
+
|
347 |
with gr.TabItem("BGM Separation"):
|
348 |
files_audio = gr.Files(type="filepath", label="Upload Audio Files to separate background music")
|
349 |
dd_uvr_device = gr.Dropdown(label="Device", value=self.whisper_inf.music_separator.device,
|
|
|
352 |
choices=self.whisper_inf.music_separator.available_models)
|
353 |
nb_uvr_segment_size = gr.Number(label="Segment Size", value=uvr_params["segment_size"], precision=0)
|
354 |
cb_uvr_save_file = gr.Checkbox(label="Save separated files to output",
|
355 |
+
value=True, visible=False)
|
356 |
btn_run = gr.Button("SEPARATE BACKGROUND MUSIC", variant="primary")
|
357 |
+
with gr.Column():
|
358 |
+
with gr.Row():
|
359 |
+
ad_instrumental = gr.Audio(label="Instrumental", scale=8)
|
360 |
+
btn_open_instrumental_folder = gr.Button('📂', scale=1)
|
361 |
+
with gr.Row():
|
362 |
+
ad_vocals = gr.Audio(label="Vocals", scale=8)
|
363 |
+
btn_open_vocals_folder = gr.Button('📂', scale=1)
|
364 |
|
365 |
+
btn_run.click(fn=self.whisper_inf.music_separator.separate_files,
|
366 |
+
inputs=[files_audio, dd_uvr_model_size, dd_uvr_device, nb_uvr_segment_size,
|
367 |
+
cb_uvr_save_file],
|
368 |
outputs=[ad_instrumental, ad_vocals])
|
369 |
+
btn_open_instrumental_folder.click(inputs=None,
|
370 |
+
outputs=None,
|
371 |
+
fn=lambda: self.open_folder(os.path.join(
|
372 |
+
self.args.output_dir, "UVR", "instrumental"
|
373 |
+
)))
|
374 |
+
btn_open_vocals_folder.click(inputs=None,
|
375 |
+
outputs=None,
|
376 |
+
fn=lambda: self.open_folder(os.path.join(
|
377 |
+
self.args.output_dir, "UVR", "vocals"
|
378 |
+
)))
|
379 |
|
380 |
# Launch the app with optional gradio settings
|
381 |
args = self.args
|
|
|
396 |
if os.path.exists(folder_path):
|
397 |
os.system(f"start {folder_path}")
|
398 |
else:
|
399 |
+
os.makedirs(folder_path, exist_ok=True)
|
400 |
+
print(f"The directory path {folder_path} has newly created.")
|
401 |
|
402 |
@staticmethod
|
403 |
def on_change_models(model_size: str):
|
modules/uvr/music_separator.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from typing import Optional, Union
|
2 |
import numpy as np
|
3 |
import torchaudio
|
4 |
import soundfile as sf
|
@@ -9,6 +9,8 @@ import gradio as gr
|
|
9 |
from datetime import datetime
|
10 |
|
11 |
from uvr.models import MDX, Demucs, VrNetwork, MDXC
|
|
|
|
|
12 |
|
13 |
|
14 |
class MusicSeparator:
|
@@ -61,7 +63,7 @@ class MusicSeparator:
|
|
61 |
device: Optional[str] = None,
|
62 |
segment_size: int = 256,
|
63 |
save_file: bool = False,
|
64 |
-
progress: gr.Progress = gr.Progress()) -> tuple[np.ndarray, np.ndarray]:
|
65 |
"""
|
66 |
Separate the background music from the audio.
|
67 |
|
@@ -74,7 +76,10 @@ class MusicSeparator:
|
|
74 |
progress (gr.Progress): Gradio progress indicator.
|
75 |
|
76 |
Returns:
|
77 |
-
|
|
|
|
|
|
|
78 |
"""
|
79 |
if isinstance(audio, str):
|
80 |
self.audio_info = torchaudio.info(audio)
|
@@ -108,13 +113,37 @@ class MusicSeparator:
|
|
108 |
result = self.model(audio)
|
109 |
instrumental, vocals = result["instrumental"].T, result["vocals"].T
|
110 |
|
|
|
111 |
if save_file:
|
112 |
instrumental_output_path = os.path.join(self.output_dir, "instrumental", f"{output_filename}-instrumental{ext}")
|
113 |
vocals_output_path = os.path.join(self.output_dir, "vocals", f"{output_filename}-vocals{ext}")
|
114 |
sf.write(instrumental_output_path, instrumental, sample_rate, format="WAV")
|
115 |
sf.write(vocals_output_path, vocals, sample_rate, format="WAV")
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
@staticmethod
|
120 |
def get_device():
|
@@ -130,3 +159,16 @@ class MusicSeparator:
|
|
130 |
torch.cuda.empty_cache()
|
131 |
gc.collect()
|
132 |
self.audio_info = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Union, List, Dict
|
2 |
import numpy as np
|
3 |
import torchaudio
|
4 |
import soundfile as sf
|
|
|
9 |
from datetime import datetime
|
10 |
|
11 |
from uvr.models import MDX, Demucs, VrNetwork, MDXC
|
12 |
+
from modules.utils.paths import DEFAULT_PARAMETERS_CONFIG_PATH
|
13 |
+
from modules.utils.files_manager import load_yaml, save_yaml
|
14 |
|
15 |
|
16 |
class MusicSeparator:
|
|
|
63 |
device: Optional[str] = None,
|
64 |
segment_size: int = 256,
|
65 |
save_file: bool = False,
|
66 |
+
progress: gr.Progress = gr.Progress()) -> tuple[np.ndarray, np.ndarray, List]:
|
67 |
"""
|
68 |
Separate the background music from the audio.
|
69 |
|
|
|
76 |
progress (gr.Progress): Gradio progress indicator.
|
77 |
|
78 |
Returns:
|
79 |
+
A Tuple of
|
80 |
+
np.ndarray: Instrumental numpy arrays.
|
81 |
+
np.ndarray: Vocals numpy arrays.
|
82 |
+
file_paths: List of file paths where the separated audio is saved. Return empty when save_file is False.
|
83 |
"""
|
84 |
if isinstance(audio, str):
|
85 |
self.audio_info = torchaudio.info(audio)
|
|
|
113 |
result = self.model(audio)
|
114 |
instrumental, vocals = result["instrumental"].T, result["vocals"].T
|
115 |
|
116 |
+
file_paths = []
|
117 |
if save_file:
|
118 |
instrumental_output_path = os.path.join(self.output_dir, "instrumental", f"{output_filename}-instrumental{ext}")
|
119 |
vocals_output_path = os.path.join(self.output_dir, "vocals", f"{output_filename}-vocals{ext}")
|
120 |
sf.write(instrumental_output_path, instrumental, sample_rate, format="WAV")
|
121 |
sf.write(vocals_output_path, vocals, sample_rate, format="WAV")
|
122 |
+
file_paths += [instrumental_output_path, vocals_output_path]
|
123 |
+
|
124 |
+
return instrumental, vocals, file_paths
|
125 |
+
|
126 |
+
def separate_files(self,
|
127 |
+
files: List,
|
128 |
+
model_name: str,
|
129 |
+
device: Optional[str] = None,
|
130 |
+
segment_size: int = 256,
|
131 |
+
save_file: bool = True,
|
132 |
+
progress: gr.Progress = gr.Progress()) -> List[str]:
|
133 |
+
"""Separate the background music from the audio files. Returns only last Instrumental and vocals file paths
|
134 |
+
to display into gr.Audio()"""
|
135 |
+
self.cache_parameters(model_size=model_name, segment_size=segment_size)
|
136 |
+
|
137 |
+
for file_path in files:
|
138 |
+
instrumental, vocals, file_paths = self.separate(
|
139 |
+
audio=file_path,
|
140 |
+
model_name=model_name,
|
141 |
+
device=device,
|
142 |
+
segment_size=segment_size,
|
143 |
+
save_file=save_file,
|
144 |
+
progress=progress
|
145 |
+
)
|
146 |
+
return file_paths
|
147 |
|
148 |
@staticmethod
|
149 |
def get_device():
|
|
|
159 |
torch.cuda.empty_cache()
|
160 |
gc.collect()
|
161 |
self.audio_info = None
|
162 |
+
|
163 |
+
@staticmethod
|
164 |
+
def cache_parameters(model_size: str,
|
165 |
+
segment_size: int):
|
166 |
+
cached_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
|
167 |
+
cached_uvr_params = cached_params["bgm_separation"]
|
168 |
+
uvr_params_to_cache = {
|
169 |
+
"model_size": model_size,
|
170 |
+
"segment_size": segment_size
|
171 |
+
}
|
172 |
+
cached_uvr_params = {**cached_uvr_params, **uvr_params_to_cache}
|
173 |
+
cached_params = {**cached_params, **cached_uvr_params}
|
174 |
+
save_yaml(cached_params, DEFAULT_PARAMETERS_CONFIG_PATH)
|
modules/whisper/whisper_base.py
CHANGED
@@ -111,7 +111,7 @@ class WhisperBase(ABC):
|
|
111 |
params.lang = language_code_dict[params.lang]
|
112 |
|
113 |
if params.is_bgm_separate:
|
114 |
-
music, audio = self.music_separator.separate(
|
115 |
audio=audio,
|
116 |
model_name=params.uvr_model_size,
|
117 |
device=params.uvr_device,
|
|
|
111 |
params.lang = language_code_dict[params.lang]
|
112 |
|
113 |
if params.is_bgm_separate:
|
114 |
+
music, audio, _ = self.music_separator.separate(
|
115 |
audio=audio,
|
116 |
model_name=params.uvr_model_size,
|
117 |
device=params.uvr_device,
|