Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,172 +1,334 @@
|
|
1 |
-
import
|
2 |
-
import binascii
|
3 |
-
import warnings
|
4 |
-
|
5 |
-
import json
|
6 |
-
import argparse
|
7 |
-
import copy
|
8 |
-
|
9 |
-
import numpy as np
|
10 |
-
import matplotlib.pyplot as plt
|
11 |
import torch
|
12 |
-
import tqdm
|
13 |
-
import librosa
|
14 |
import soundfile as sf
|
15 |
-
import
|
16 |
-
import
|
17 |
-
|
18 |
-
from
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
21 |
|
|
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
def
|
28 |
try:
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
# trim audio length - due to computation time on HuggingFace environment
|
38 |
-
trim_audio(target_file_path=filename_in, start_point_in_second=start_point_in_second, duration_in_second=duration_in_second)
|
39 |
|
40 |
-
return
|
41 |
|
42 |
-
def
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
t[0].download(filename=filename_ref)
|
48 |
-
except VideoUnavailable as e:
|
49 |
-
warnings.warn(f"Video Not Found at {yt_link} ({e})")
|
50 |
-
filename_ref = None
|
51 |
-
|
52 |
-
# trim audio length - due to computation time on HuggingFace environment
|
53 |
-
trim_audio(target_file_path=filename_ref, start_point_in_second=start_point_in_second, duration_in_second=duration_in_second)
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
os.system(f"rm -r {yt_video_dir}/separated")
|
60 |
-
# change file path name
|
61 |
-
os.system(f"cp {file_uploaded_in} {yt_video_dir}/input.wav")
|
62 |
-
os.system(f"cp {file_uploaded_ref} {yt_video_dir}/reference.wav")
|
63 |
|
64 |
-
|
65 |
-
|
66 |
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
with gr.Blocks() as demo:
|
75 |
-
gr.
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
)
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
99 |
)
|
100 |
-
|
|
|
|
|
|
|
|
|
101 |
with gr.Column():
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
with gr.Tab("YouTube url"):
|
106 |
-
with gr.Row():
|
107 |
-
yt_link_in = gr.Textbox(
|
108 |
-
label="Enter YouTube Link of the Video", autofocus=True, lines=3
|
109 |
-
)
|
110 |
-
yt_in_start_sec = gr.Number(
|
111 |
-
value=0,
|
112 |
-
label="starting point of the song (in seconds)"
|
113 |
-
)
|
114 |
-
yt_in_duration_sec = gr.Number(
|
115 |
-
value=30,
|
116 |
-
label="duration of the song (in seconds)"
|
117 |
-
)
|
118 |
-
yt_btn_in = gr.Button("Download Audio from YouTube Link", size="lg")
|
119 |
-
yt_audio_path_in = gr.Audio(
|
120 |
-
label="Input Audio Extracted from the YouTube Video", interactive=False
|
121 |
-
)
|
122 |
-
yt_btn_in.click(
|
123 |
-
get_audio_from_yt_video_input,
|
124 |
-
inputs=[yt_link_in, yt_in_start_sec, yt_in_duration_sec],
|
125 |
-
outputs=[yt_audio_path_in, file_uploaded_in],
|
126 |
-
)
|
127 |
-
with gr.Blocks():
|
128 |
-
with gr.Tab("Reference Music"):
|
129 |
-
file_uploaded_ref = gr.Audio(label="Reference track (mix) to copy mixing style", type='filepath')
|
130 |
-
with gr.Tab("YouTube url"):
|
131 |
-
with gr.Row():
|
132 |
-
yt_link_ref = gr.Textbox(
|
133 |
-
label="Enter YouTube Link of the Video", autofocus=True, lines=3
|
134 |
-
)
|
135 |
-
yt_ref_start_sec = gr.Number(
|
136 |
-
value=0,
|
137 |
-
label="starting point of the song (in seconds)"
|
138 |
-
)
|
139 |
-
yt_ref_duration_sec = gr.Number(
|
140 |
-
value=30,
|
141 |
-
label="duration of the song (in seconds)"
|
142 |
-
)
|
143 |
-
yt_btn_ref = gr.Button("Download Audio from YouTube Link", size="lg")
|
144 |
-
yt_audio_path_ref = gr.Audio(
|
145 |
-
label="Reference Audio Extracted from the YouTube Video", interactive=False
|
146 |
-
)
|
147 |
-
yt_btn_ref.click(
|
148 |
-
get_audio_from_yt_video_ref,
|
149 |
-
inputs=[yt_link_ref, yt_ref_start_sec, yt_ref_duration_sec],
|
150 |
-
outputs=[yt_audio_path_ref, file_uploaded_ref],
|
151 |
-
)
|
152 |
-
|
153 |
-
with gr.Group():
|
154 |
-
gr.HTML(
|
155 |
-
"""
|
156 |
-
<div> <h3> <center> Mixing Style Transfer. Perform stem-wise audio-effects style conversion by first source separating the input mix. The inference computation time takes longer as the input samples' duration. so plz be patient... </h3> </div>
|
157 |
-
"""
|
158 |
-
)
|
159 |
with gr.Column():
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
|
|
167 |
)
|
|
|
168 |
|
|
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
|
|
|
|
3 |
import soundfile as sf
|
4 |
+
import numpy as np
|
5 |
+
import yaml
|
6 |
+
from inference import MasteringStyleTransfer
|
7 |
+
from utils import download_youtube_audio
|
8 |
+
from config import args
|
9 |
+
import pyloudnorm as pyln
|
10 |
+
import tempfile
|
11 |
+
import os
|
12 |
+
import pandas as pd
|
13 |
|
14 |
+
mastering_transfer = MasteringStyleTransfer(args)
|
15 |
|
16 |
+
def denormalize_audio(audio, dtype=np.int16):
|
17 |
+
"""
|
18 |
+
Denormalize the audio from the range [-1, 1] to the full range of the specified dtype.
|
19 |
+
"""
|
20 |
+
if dtype == np.int16:
|
21 |
+
audio = np.clip(audio, -1, 1) # Ensure the input is in the range [-1, 1]
|
22 |
+
return (audio * 32767).astype(np.int16)
|
23 |
+
elif dtype == np.float32:
|
24 |
+
return audio.astype(np.float32)
|
25 |
+
else:
|
26 |
+
raise ValueError("Unsupported dtype. Use np.int16 or np.float32.")
|
27 |
|
28 |
+
def loudness_normalize(audio, sample_rate, target_loudness=-12.0):
|
29 |
+
# Ensure audio is float32
|
30 |
+
if audio.dtype != np.float32:
|
31 |
+
audio = audio.astype(np.float32)
|
32 |
+
|
33 |
+
# If audio is mono, reshape to (samples, 1)
|
34 |
+
if audio.ndim == 1:
|
35 |
+
audio = audio.reshape(-1, 1)
|
36 |
+
|
37 |
+
meter = pyln.Meter(sample_rate) # create BS.1770 meter
|
38 |
+
loudness = meter.integrated_loudness(audio)
|
39 |
+
|
40 |
+
loudness_normalized_audio = pyln.normalize.loudness(audio, loudness, target_loudness)
|
41 |
+
return loudness_normalized_audio
|
42 |
|
43 |
+
def process_youtube_url(url):
|
44 |
try:
|
45 |
+
audio, sr = download_youtube_audio(url)
|
46 |
+
return (sr, audio), None
|
47 |
+
except Exception as e:
|
48 |
+
return None, f"Error processing YouTube URL: {str(e)}"
|
49 |
+
|
50 |
+
def download_youtube_audios(input_youtube_url, reference_youtube_url):
|
51 |
+
input_audio, input_error = process_youtube_url(input_youtube_url) if input_youtube_url else (None, None)
|
52 |
+
reference_audio, reference_error = process_youtube_url(reference_youtube_url) if reference_youtube_url else (None, None)
|
|
|
|
|
53 |
|
54 |
+
return input_audio, reference_audio, input_error, reference_error
|
55 |
|
56 |
+
def process_audio_with_youtube(input_audio, input_youtube_url, reference_audio, reference_youtube_url):
|
57 |
+
if input_youtube_url:
|
58 |
+
input_audio, error = process_youtube_url(input_youtube_url)
|
59 |
+
if error:
|
60 |
+
return None, None, error
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
if reference_youtube_url:
|
63 |
+
reference_audio, error = process_youtube_url(reference_youtube_url)
|
64 |
+
if error:
|
65 |
+
return None, None, error
|
|
|
|
|
|
|
|
|
66 |
|
67 |
+
if input_audio is None or reference_audio is None:
|
68 |
+
return None, None, "Both input and reference audio are required."
|
69 |
|
70 |
+
return process_audio(input_audio, reference_audio)
|
71 |
+
|
72 |
+
def to_numpy_audio(audio):
|
73 |
+
# Convert output_audio to numpy array if it's a tensor
|
74 |
+
if isinstance(audio, torch.Tensor):
|
75 |
+
audio = audio.cpu().numpy()
|
76 |
+
# check dimension
|
77 |
+
if audio.ndim == 1:
|
78 |
+
audio = audio.reshape(-1, 1)
|
79 |
+
elif audio.ndim > 2:
|
80 |
+
audio = audio.squeeze()
|
81 |
+
# Ensure the audio is in the correct shape (samples, channels)
|
82 |
+
if audio.shape[1] > audio.shape[0]:
|
83 |
+
audio = audio.transpose(1,0)
|
84 |
+
return audio
|
85 |
+
|
86 |
+
def process_audio(input_audio, reference_audio):
|
87 |
+
output_audio, predicted_params, sr, normalized_input = mastering_transfer.process_audio(
|
88 |
+
input_audio, reference_audio
|
89 |
+
)
|
90 |
|
91 |
+
param_output = mastering_transfer.get_param_output_string(predicted_params)
|
92 |
+
|
93 |
+
# Convert to numpy audio
|
94 |
+
output_audio = to_numpy_audio(output_audio)
|
95 |
+
normalized_input = to_numpy_audio(normalized_input)
|
96 |
+
# Normalize output audio
|
97 |
+
output_audio = loudness_normalize(output_audio, sr)
|
98 |
+
# Denormalize the audio to int16
|
99 |
+
output_audio = denormalize_audio(output_audio, dtype=np.int16)
|
100 |
+
|
101 |
+
return (sr, output_audio), param_output, (sr, normalized_input)
|
102 |
+
|
103 |
+
def perform_ito(input_audio, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights, loss_function, clap_target_type, clap_text_prompt, clap_distance_fn):
|
104 |
+
if ito_reference_audio is None:
|
105 |
+
ito_reference_audio = reference_audio
|
106 |
+
af_weights = [float(w.strip()) for w in af_weights.split(',')]
|
107 |
+
|
108 |
+
ito_config = {
|
109 |
+
'optimizer': optimizer,
|
110 |
+
'learning_rate': learning_rate,
|
111 |
+
'num_steps': num_steps,
|
112 |
+
'af_weights': af_weights,
|
113 |
+
'sample_rate': args.sample_rate,
|
114 |
+
'loss_function': loss_function,
|
115 |
+
'clap_target_type': clap_target_type,
|
116 |
+
'clap_text_prompt': clap_text_prompt,
|
117 |
+
'clap_distance_fn': clap_distance_fn
|
118 |
+
}
|
119 |
+
|
120 |
+
input_tensor = mastering_transfer.preprocess_audio(input_audio, args.sample_rate)
|
121 |
+
reference_tensor = mastering_transfer.preprocess_audio(reference_audio, args.sample_rate)
|
122 |
+
ito_reference_tensor = mastering_transfer.preprocess_audio(ito_reference_audio, args.sample_rate)
|
123 |
+
|
124 |
+
initial_reference_feature = mastering_transfer.get_reference_embedding(reference_tensor)
|
125 |
+
|
126 |
+
all_results, min_loss_step = mastering_transfer.inference_time_optimization(
|
127 |
+
input_tensor, ito_reference_tensor, ito_config, initial_reference_feature
|
128 |
+
)
|
129 |
|
130 |
+
ito_log = ""
|
131 |
+
loss_values = []
|
132 |
+
for result in all_results:
|
133 |
+
ito_log += result['log']
|
134 |
+
loss_values.append({"step": result['step'], "loss": result['loss']})
|
135 |
+
|
136 |
+
# Return the results of the last step
|
137 |
+
last_result = all_results[-1]
|
138 |
+
current_output = last_result['audio']
|
139 |
+
ito_param_output = mastering_transfer.get_param_output_string(last_result['params'])
|
140 |
|
141 |
+
# Convert to numpy audio
|
142 |
+
current_output = to_numpy_audio(current_output)
|
143 |
+
# Loudness normalize output audio
|
144 |
+
current_output = loudness_normalize(current_output, args.sample_rate)
|
145 |
+
# Denormalize the audio to int16
|
146 |
+
current_output = denormalize_audio(current_output, dtype=np.int16)
|
147 |
|
148 |
+
return (args.sample_rate, current_output), ito_param_output, num_steps, ito_log, pd.DataFrame(loss_values), all_results
|
149 |
+
|
150 |
+
def update_ito_output(all_results, selected_step):
|
151 |
+
selected_result = all_results[selected_step - 1]
|
152 |
+
current_output = selected_result['audio']
|
153 |
+
ito_param_output = mastering_transfer.get_param_output_string(selected_result['params'])
|
154 |
+
|
155 |
+
# Convert to numpy audio
|
156 |
+
current_output = to_numpy_audio(current_output)
|
157 |
+
# Loudness normalize output audio
|
158 |
+
current_output = loudness_normalize(current_output, args.sample_rate)
|
159 |
+
# Denormalize the audio to int16
|
160 |
+
current_output = denormalize_audio(current_output, dtype=np.int16)
|
161 |
+
|
162 |
+
return (args.sample_rate, current_output), ito_param_output, selected_result['log']
|
163 |
+
|
164 |
+
|
165 |
+
""" APP display """
|
166 |
with gr.Blocks() as demo:
|
167 |
+
gr.Markdown("# ITO-Master: Inference Time Optimization for Mastering Style Transfer")
|
168 |
+
with gr.Row():
|
169 |
+
gr.Markdown("Interactive demo of Inference Time Optimization (ITO) for Music Mastering Style Transfer. \
|
170 |
+
The mastering style transfer is performed by a differentiable audio processing model, and the predicted parameters are shown as the output. \
|
171 |
+
Perform mastering style transfer with an input source audio and a reference mastering style audio. On top of this result, you can perform ITO to optimize the reference embedding $z_{ref}$ to further gain control over the output mastering style.")
|
172 |
+
gr.Image("ito_snow.png", width=500, height=300, label="ITO pipeline")
|
173 |
+
|
174 |
+
gr.Markdown("## Step 1: Mastering Style Transfer")
|
175 |
+
|
176 |
+
with gr.Tab("Upload Audio"):
|
177 |
+
with gr.Row():
|
178 |
+
input_audio = gr.Audio(label="Source Audio $x_{in}$")
|
179 |
+
reference_audio = gr.Audio(label="Reference Style Audio $x_{ref}$")
|
180 |
+
|
181 |
+
process_button = gr.Button("Process Mastering Style Transfer")
|
182 |
+
gr.Markdown('<span style="color: lightgray; font-style: italic;">all output samples are normalized to -12dB LUFS</span>')
|
183 |
+
|
184 |
+
with gr.Row():
|
185 |
+
with gr.Column():
|
186 |
+
output_audio = gr.Audio(label="Output Audio y'", type='numpy')
|
187 |
+
normalized_input = gr.Audio(label="Normalized Source Audio", type='numpy')
|
188 |
+
param_output = gr.Textbox(label="Predicted Parameters", lines=5)
|
189 |
+
|
190 |
+
process_button.click(
|
191 |
+
process_audio,
|
192 |
+
inputs=[input_audio, reference_audio],
|
193 |
+
outputs=[output_audio, param_output, normalized_input]
|
194 |
+
)
|
195 |
+
|
196 |
+
with gr.Tab("YouTube Audio"):
|
197 |
+
gr.Markdown("Seems like it's currently unavailable to download YouTube clips from HuggingFace... But you could try out yourself in your environment with the available source code.")
|
198 |
+
with gr.Row():
|
199 |
+
input_youtube_url = gr.Textbox(label="Input YouTube URL")
|
200 |
+
reference_youtube_url = gr.Textbox(label="Reference YouTube URL")
|
201 |
+
|
202 |
+
download_button = gr.Button("Download YouTube Audios")
|
203 |
+
error_message_yt = gr.Textbox(label="Error Message", visible=False)
|
204 |
+
|
205 |
+
with gr.Row():
|
206 |
+
input_audio_yt = gr.Audio(label="Source Audio (Do not put when using YouTube URL)")
|
207 |
+
reference_audio_yt = gr.Audio(label="Reference Style Audio (Do not put when using YouTube URL)")
|
208 |
+
|
209 |
+
process_button_yt = gr.Button("Process Mastering Style Transfer")
|
210 |
+
gr.Markdown('<span style="color: lightgray; font-style: italic;">all output samples are normalized to -12dB LUFS</span>')
|
211 |
+
|
212 |
+
with gr.Row():
|
213 |
+
with gr.Column():
|
214 |
+
output_audio_yt = gr.Audio(label="Output Audio y'", type='numpy')
|
215 |
+
normalized_input_yt = gr.Audio(label="Normalized Source Audio", type='numpy')
|
216 |
+
param_output_yt = gr.Textbox(label="Predicted Parameters", lines=5)
|
217 |
+
|
218 |
+
def handle_download_youtube_audios(input_youtube_url, reference_youtube_url):
|
219 |
+
input_audio, reference_audio, input_error, reference_error = download_youtube_audios(input_youtube_url, reference_youtube_url)
|
220 |
+
if input_error or reference_error:
|
221 |
+
return None, None, gr.update(visible=True, value=input_error or reference_error)
|
222 |
+
return input_audio, reference_audio, gr.update(visible=False, value="")
|
223 |
+
|
224 |
+
download_button.click(
|
225 |
+
handle_download_youtube_audios,
|
226 |
+
inputs=[input_youtube_url, reference_youtube_url],
|
227 |
+
outputs=[input_audio_yt, reference_audio_yt, error_message_yt]
|
228 |
+
)
|
229 |
+
|
230 |
+
process_button_yt.click(
|
231 |
+
process_audio,
|
232 |
+
inputs=[input_audio_yt, reference_audio_yt],
|
233 |
+
outputs=[output_audio_yt, param_output_yt, normalized_input_yt]
|
234 |
+
)
|
235 |
+
|
236 |
+
# def process_and_handle_errors(input_audio, input_youtube_url, reference_audio, reference_youtube_url):
|
237 |
+
# result = process_audio_with_youtube(input_audio, input_youtube_url, reference_audio, reference_youtube_url)
|
238 |
+
# if len(result) == 3 and isinstance(result[2], str): # Error occurred check
|
239 |
+
# return None, None, None, gr.update(visible=True, value=result[2])
|
240 |
+
# return result[0], result[1], result[2], gr.update(visible=False, value="")
|
241 |
+
|
242 |
+
# process_button_yt.click(
|
243 |
+
# process_and_handle_errors,
|
244 |
+
# inputs=[input_audio_yt, input_youtube_url, reference_audio_yt, reference_youtube_url],
|
245 |
+
# outputs=[output_audio_yt, param_output_yt, normalized_input_yt, error_message_yt]
|
246 |
+
# )
|
247 |
+
|
248 |
+
gr.Markdown("## Step 2: Inference Time Optimization (ITO)")
|
249 |
+
|
250 |
+
with gr.Row():
|
251 |
+
ito_reference_audio = gr.Audio(label="ITO Reference Style Audio $x'_{ref}$ (optional)")
|
252 |
+
with gr.Column():
|
253 |
+
num_steps = gr.Slider(minimum=1, maximum=100, value=10, step=1, label="Number of Steps for additional optimization")
|
254 |
+
optimizer = gr.Dropdown(["Adam", "RAdam", "SGD"], value="RAdam", label="Optimizer")
|
255 |
+
learning_rate = gr.Slider(minimum=0.0001, maximum=0.1, value=0.001, step=0.0001, label="Learning Rate")
|
256 |
+
loss_function = gr.Radio(["AudioFeatureLoss", "CLAPFeatureLoss"], label="Loss Function", value="AudioFeatureLoss")
|
257 |
+
|
258 |
+
# Audio Feature Loss weights
|
259 |
+
with gr.Column(visible=True) as audio_feature_weights:
|
260 |
+
af_weights = gr.Textbox(
|
261 |
+
label="AudioFeatureLoss Weights (comma-separated)",
|
262 |
+
value="0.1,0.001,1.0,1.0,0.1",
|
263 |
+
info="RMS, Crest Factor, Stereo Width, Stereo Imbalance, Bark Spectrum"
|
264 |
+
)
|
265 |
+
|
266 |
+
# CLAP Loss options
|
267 |
+
with gr.Column(visible=False) as clap_options:
|
268 |
+
clap_target_type = gr.Radio(["Audio", "Text"], label="CLAP Target Type", value="Audio")
|
269 |
+
clap_text_prompt = gr.Textbox(label="CLAP Text Prompt", visible=False)
|
270 |
+
clap_distance_fn = gr.Dropdown(["cosine", "mse", "l1"], label="CLAP Distance Function", value="cosine")
|
271 |
+
|
272 |
+
def update_clap_options(loss_function):
|
273 |
+
if loss_function == "CLAPFeatureLoss":
|
274 |
+
return gr.update(visible=False), gr.update(visible=True)
|
275 |
+
else:
|
276 |
+
return gr.update(visible=True), gr.update(visible=False)
|
277 |
+
|
278 |
+
loss_function.change(
|
279 |
+
update_clap_options,
|
280 |
+
inputs=[loss_function],
|
281 |
+
outputs=[audio_feature_weights, clap_options]
|
282 |
)
|
283 |
+
|
284 |
+
def update_clap_text_prompt(clap_target_type):
|
285 |
+
return gr.update(visible=clap_target_type == "Text")
|
286 |
+
|
287 |
+
clap_target_type.change(
|
288 |
+
update_clap_text_prompt,
|
289 |
+
inputs=[clap_target_type],
|
290 |
+
outputs=[clap_text_prompt]
|
291 |
)
|
292 |
+
|
293 |
+
ito_button = gr.Button("Perform ITO")
|
294 |
+
gr.Markdown('<span style="color: lightgray; font-style: italic;">all output samples are normalized to -12dB LUFS</span>')
|
295 |
+
|
296 |
+
with gr.Row():
|
297 |
with gr.Column():
|
298 |
+
ito_output_audio = gr.Audio(label="ITO Output Audio")
|
299 |
+
ito_step_slider = gr.Slider(minimum=1, maximum=100, step=1, label="ITO Step", interactive=True)
|
300 |
+
ito_param_output = gr.Textbox(label="ITO Predicted Parameters", lines=15)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
with gr.Column():
|
302 |
+
ito_loss_plot = gr.LinePlot(
|
303 |
+
x="step",
|
304 |
+
y="loss",
|
305 |
+
title="ITO Loss Curve",
|
306 |
+
x_title="Step",
|
307 |
+
y_title="Loss",
|
308 |
+
height=300,
|
309 |
+
width=600,
|
310 |
)
|
311 |
+
ito_log = gr.Textbox(label="ITO Log", lines=10)
|
312 |
|
313 |
+
all_results = gr.State([])
|
314 |
|
315 |
+
ito_button.click(
|
316 |
+
perform_ito,
|
317 |
+
inputs=[normalized_input, reference_audio, ito_reference_audio, num_steps, optimizer, learning_rate, af_weights, loss_function, clap_target_type, clap_text_prompt, clap_distance_fn],
|
318 |
+
outputs=[ito_output_audio, ito_param_output, ito_step_slider, ito_log, ito_loss_plot, all_results]
|
319 |
+
).then(
|
320 |
+
update_ito_output,
|
321 |
+
inputs=[all_results, ito_step_slider],
|
322 |
+
outputs=[ito_output_audio, ito_param_output, ito_log]
|
323 |
+
)
|
324 |
+
|
325 |
+
ito_step_slider.change(
|
326 |
+
update_ito_output,
|
327 |
+
inputs=[all_results, ito_step_slider],
|
328 |
+
outputs=[ito_output_audio, ito_param_output, ito_log]
|
329 |
+
)
|
330 |
+
|
331 |
+
|
332 |
+
|
333 |
+
# demo.launch()
|
334 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|