File size: 12,069 Bytes
2777fde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
""" 
"Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects"

    Implementation of neural networks used in the task 'Music Mixing Style Transfer'
        - 'FXencoder'
        - TCN based 'MixFXcloner'

    We modify the TCN implementation from: https://github.com/csteinmetz1/micro-tcn
    which was introduced in the work "Efficient neural networks for real-time modeling of analog dynamic range compression" by Christian J. Steinmetz, and Joshua D. Reiss
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init

import os
import sys
currentdir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.dirname(currentdir))

from networks.network_utils import *



# FXencoder that extracts audio effects from music recordings trained with a contrastive objective
class FXencoder(nn.Module):
    def __init__(self, config):
        super(FXencoder, self).__init__()
        # input is stereo channeled audio
        config["channels"].insert(0, 2)

        # encoder layers
        encoder = []
        for i in range(len(config["kernels"])):
            if config["conv_block"]=='res':
                encoder.append(Res_ConvBlock(dimension=1, \
                                                in_channels=config["channels"][i], \
                                                out_channels=config["channels"][i+1], \
                                                kernel_size=config["kernels"][i], \
                                                stride=config["strides"][i], \
                                                padding="SAME", \
                                                dilation=config["dilation"][i], \
                                                norm=config["norm"], \
                                                activation=config["activation"], \
                                                last_activation=config["activation"]))
            elif config["conv_block"]=='conv':
                encoder.append(ConvBlock(dimension=1, \
                                            layer_num=1, \
                                            in_channels=config["channels"][i], \
                                            out_channels=config["channels"][i+1], \
                                            kernel_size=config["kernels"][i], \
                                            stride=config["strides"][i], \
                                            padding="VALID", \
                                            dilation=config["dilation"][i], \
                                            norm=config["norm"], \
                                            activation=config["activation"], \
                                            last_activation=config["activation"], \
                                            mode='conv'))
        self.encoder = nn.Sequential(*encoder)

        # pooling method
        self.glob_pool = nn.AdaptiveAvgPool1d(1)

    # network forward operation
    def forward(self, input):
        enc_output = self.encoder(input)
        glob_pooled = self.glob_pool(enc_output).squeeze(-1)

        # outputs c feature
        return glob_pooled


# MixFXcloner which is based on a Temporal Convolutional Network (TCN) module
    # original implementation : https://github.com/csteinmetz1/micro-tcn
import pytorch_lightning as pl
class TCNModel(pl.LightningModule):
    """ Temporal convolutional network with conditioning module.
        Args:
            nparams (int): Number of conditioning parameters.
            ninputs (int): Number of input channels (mono = 1, stereo 2). Default: 1
            noutputs (int): Number of output channels (mono = 1, stereo 2). Default: 1
            nblocks (int): Number of total TCN blocks. Default: 10
            kernel_size (int): Width of the convolutional kernels. Default: 3
            dialation_growth (int): Compute the dilation factor at each block as dilation_growth ** (n % stack_size). Default: 1
            channel_growth (int): Compute the output channels at each black as in_ch * channel_growth. Default: 2
            channel_width (int): When channel_growth = 1 all blocks use convolutions with this many channels. Default: 64
            stack_size (int): Number of blocks that constitute a single stack of blocks. Default: 10
            grouped (bool): Use grouped convolutions to reduce the total number of parameters. Default: False
            causal (bool): Causal TCN configuration does not consider future input values. Default: False
            skip_connections (bool): Skip connections from each block to the output. Default: False
            num_examples (int): Number of evaluation audio examples to log after each epochs. Default: 4
        """
    def __init__(self, 
                 nparams,
                 ninputs=1,
                 noutputs=1,
                 nblocks=10, 
                 kernel_size=3, 
                 dilation_growth=1, 
                 channel_growth=1, 
                 channel_width=32, 
                 stack_size=10,
                 cond_dim=2048,
                 grouped=False,
                 causal=False,
                 skip_connections=False,
                 num_examples=4,
                 save_dir=None,
                 **kwargs):
        super(TCNModel, self).__init__()
        self.save_hyperparameters()

        self.blocks = torch.nn.ModuleList()
        for n in range(nblocks):
            in_ch = out_ch if n > 0 else ninputs
            
            if self.hparams.channel_growth > 1:
                out_ch = in_ch * self.hparams.channel_growth 
            else:
                out_ch = self.hparams.channel_width

            dilation = self.hparams.dilation_growth ** (n % self.hparams.stack_size)
            self.blocks.append(TCNBlock(in_ch, 
                                        out_ch, 
                                        kernel_size=self.hparams.kernel_size, 
                                        dilation=dilation,
                                        padding="same" if self.hparams.causal else "valid",
                                        causal=self.hparams.causal,
                                        cond_dim=cond_dim, 
                                        grouped=self.hparams.grouped,
                                        conditional=True if self.hparams.nparams > 0 else False))

        self.output = torch.nn.Conv1d(out_ch, noutputs, kernel_size=1)

    def forward(self, x, cond):
        # iterate over blocks passing conditioning
        for idx, block in enumerate(self.blocks):
            # for SeFa
            if isinstance(cond, list):
                x = block(x, cond[idx])
            else:
                x = block(x, cond)
            skips = 0

        out = torch.clamp(self.output(x + skips), min=-1, max=1)

        return out

    def compute_receptive_field(self):
        """ Compute the receptive field in samples."""
        rf = self.hparams.kernel_size
        for n in range(1,self.hparams.nblocks):
            dilation = self.hparams.dilation_growth ** (n % self.hparams.stack_size)
            rf = rf + ((self.hparams.kernel_size-1) * dilation)
        return rf

    # add any model hyperparameters here
    @staticmethod
    def add_model_specific_args(parent_parser):
        parser = ArgumentParser(parents=[parent_parser], add_help=False)
        # --- model related ---
        parser.add_argument('--ninputs', type=int, default=1)
        parser.add_argument('--noutputs', type=int, default=1)
        parser.add_argument('--nblocks', type=int, default=4)
        parser.add_argument('--kernel_size', type=int, default=5)
        parser.add_argument('--dilation_growth', type=int, default=10)
        parser.add_argument('--channel_growth', type=int, default=1)
        parser.add_argument('--channel_width', type=int, default=32)
        parser.add_argument('--stack_size', type=int, default=10)
        parser.add_argument('--grouped', default=False, action='store_true')
        parser.add_argument('--causal', default=False, action="store_true")
        parser.add_argument('--skip_connections', default=False, action="store_true")

        return parser


class TCNBlock(torch.nn.Module):
    def __init__(self, 
                in_ch, 
                out_ch, 
                kernel_size=3, 
                dilation=1, 
                cond_dim=2048, 
                grouped=False, 
                causal=False,
                conditional=False, 
                **kwargs):
        super(TCNBlock, self).__init__()

        self.in_ch = in_ch
        self.out_ch = out_ch
        self.kernel_size = kernel_size
        self.dilation = dilation
        self.grouped = grouped
        self.causal = causal
        self.conditional = conditional

        groups = out_ch if grouped and (in_ch % out_ch == 0) else 1

        self.pad_length = ((kernel_size-1)*dilation) if self.causal else ((kernel_size-1)*dilation)//2
        self.conv1 = torch.nn.Conv1d(in_ch, 
                                     out_ch, 
                                     kernel_size=kernel_size, 
                                     padding=self.pad_length,
                                     dilation=dilation,
                                     groups=groups,
                                     bias=False)
        if grouped:
            self.conv1b = torch.nn.Conv1d(out_ch, out_ch, kernel_size=1)

        if conditional:
            self.film = FiLM(cond_dim, out_ch)
        self.bn = torch.nn.BatchNorm1d(out_ch)

        self.relu = torch.nn.LeakyReLU()
        self.res = torch.nn.Conv1d(in_ch, 
                                   out_ch, 
                                   kernel_size=1,
                                   groups=in_ch,
                                   bias=False)

    def forward(self, x, p):
        x_in = x

        x = self.relu(self.bn(self.conv1(x)))
        x = self.film(x, p)

        x_res = self.res(x_in)

        if self.causal:
            x = x[..., :-self.pad_length]
        x += x_res

        return x



if __name__ == '__main__':
    ''' check model I/O shape '''
    import yaml
    with open('networks/configs.yaml', 'r') as f:
        configs = yaml.full_load(f)

    batch_size = 32
    sr = 44100
    input_length = sr*5
    
    input = torch.rand(batch_size, 2, input_length)
    print(f"Input Shape : {input.shape}\n")
    

    print('\n========== Audio Effects Encoder (FXencoder) ==========')
    model_arc = "FXencoder"
    model_options = "default"

    config = configs[model_arc][model_options]
    print(f"configuration: {config}")

    network = FXencoder(config)
    pytorch_total_params = sum(p.numel() for p in network.parameters() if p.requires_grad)
    print(f"Number of trainable parameters : {pytorch_total_params}")

    # model inference
    output_c = network(input)
    print(f"Output Shape : {output_c.shape}")


    print('\n========== TCN based MixFXcloner ==========')
    model_arc = "TCN"
    model_options = "default"

    config = configs[model_arc][model_options]
    print(f"configuration: {config}")

    network = TCNModel(nparams=config["condition_dimension"], ninputs=2, noutputs=2, \
                        nblocks=config["nblocks"], \
                        dilation_growth=config["dilation_growth"], \
                        kernel_size=config["kernel_size"], \
                        channel_width=config["channel_width"], \
                        stack_size=config["stack_size"], \
                        cond_dim=config["condition_dimension"], \
                        causal=config["causal"])
    pytorch_total_params = sum(p.numel() for p in network.parameters() if p.requires_grad)
    print(f"Number of trainable parameters : {pytorch_total_params}\tReceptive field duration : {network.compute_receptive_field() / sr:.3f}")

    ref_embedding = output_c
    # model inference
    output = network(input, output_c)
    print(f"Output Shape : {output.shape}")