Spaces:
Running
on
T4
Running
on
T4
""" | |
Inference code of extracting embeddings from music recordings using FXencoder | |
of the work "Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects" | |
Process : extracts FX embeddings of each song inside the target directory. | |
""" | |
from glob import glob | |
import os | |
import librosa | |
import numpy as np | |
import torch | |
import sys | |
currentdir = os.path.dirname(os.path.realpath(__file__)) | |
sys.path.append(os.path.join(os.path.dirname(currentdir), "mixing_style_transfer")) | |
from networks import FXencoder | |
from data_loader import * | |
class FXencoder_Inference: | |
def __init__(self, args, trained_w_ddp=True): | |
if args.inference_device!='cpu' and torch.cuda.is_available(): | |
self.device = torch.device("cuda:0") | |
else: | |
self.device = torch.device("cpu") | |
# inference computational hyperparameters | |
self.segment_length = args.segment_length | |
self.batch_size = args.batch_size | |
self.sample_rate = 44100 # sampling rate should be 44100 | |
self.time_in_seconds = int(args.segment_length // self.sample_rate) | |
# directory configuration | |
self.output_dir = args.target_dir if args.output_dir==None else args.output_dir | |
self.target_dir = args.target_dir | |
# load model and its checkpoint weights | |
self.models = {} | |
self.models['effects_encoder'] = FXencoder(args.cfg_encoder).to(self.device) | |
ckpt_paths = {'effects_encoder' : args.ckpt_path_enc} | |
# reload saved model weights | |
ddp = trained_w_ddp | |
self.reload_weights(ckpt_paths, ddp=ddp) | |
# save current arguments | |
self.save_args(args) | |
# reload model weights from the target checkpoint path | |
def reload_weights(self, ckpt_paths, ddp=True): | |
for cur_model_name in self.models.keys(): | |
checkpoint = torch.load(ckpt_paths[cur_model_name], map_location=self.device) | |
from collections import OrderedDict | |
new_state_dict = OrderedDict() | |
for k, v in checkpoint["model"].items(): | |
# remove `module.` if the model was trained with DDP | |
name = k[7:] if ddp else k | |
new_state_dict[name] = v | |
# load params | |
self.models[cur_model_name].load_state_dict(new_state_dict) | |
print(f"---reloaded checkpoint weights : {cur_model_name} ---") | |
# save averaged embedding from whole songs | |
def save_averaged_embeddings(self, ): | |
# embedding output directory path | |
emb_out_dir = f"{self.output_dir}" | |
print(f'\n\n=====Inference seconds : {self.time_in_seconds}=====') | |
# target_file_paths = glob(f"{self.target_dir}/**/*.wav", recursive=True) | |
target_file_paths = glob(os.path.join(self.target_dir, '**', '*.wav'), recursive=True) | |
for step, target_file_path in enumerate(target_file_paths): | |
print(f"\nInference step : {step+1}/{len(target_file_paths)}") | |
print(f"---current file path : {target_file_path}---") | |
''' load waveform signal ''' | |
target_song_whole = load_wav_segment(target_file_path, axis=0) | |
# check if mono -> convert to stereo by duplicating mono signal | |
if len(target_song_whole.shape)==1: | |
target_song_whole = np.stack((target_song_whole, target_song_whole), axis=0) | |
# check axis dimension | |
# signal shape should be : [channel, signal duration] | |
elif target_song_whole.shape[1]==2: | |
target_song_whole = target_song_whole.transpose() | |
target_song_whole = torch.from_numpy(target_song_whole).float() | |
''' segmentize whole songs into batch ''' | |
whole_batch_data = self.batchwise_segmentization(target_song_whole, target_file_path) | |
''' inference ''' | |
# infer whole song | |
infered_data_list = [] | |
infered_c_list = [] | |
infered_z_list = [] | |
for cur_idx, cur_data in enumerate(whole_batch_data): | |
cur_data = cur_data.to(self.device) | |
with torch.no_grad(): | |
self.models["effects_encoder"].eval() | |
# FXencoder | |
out_c_emb = self.models["effects_encoder"](cur_data) | |
infered_c_list.append(out_c_emb.cpu().detach()) | |
avg_c_feat = torch.mean(torch.cat(infered_c_list, dim=0), dim=0).squeeze().cpu().detach().numpy() | |
# save outputs | |
cur_output_path = target_file_path.replace(self.target_dir, self.output_dir).replace('.wav', '_fx_embedding.npy') | |
os.makedirs(os.path.dirname(cur_output_path), exist_ok=True) | |
np.save(cur_output_path, avg_c_feat) | |
# function that segmentize an entire song into batch | |
def batchwise_segmentization(self, target_song, target_file_path, discard_last=False): | |
assert target_song.shape[-1] >= self.segment_length, \ | |
f"Error : Insufficient duration!\n\t \ | |
Target song's length is shorter than segment length.\n\t \ | |
Song name : {target_file_path}\n\t \ | |
Consider changing the 'segment_length' or song with sufficient duration" | |
# discard restovers (last segment) | |
if discard_last: | |
target_length = target_song.shape[-1] - target_song.shape[-1] % self.segment_length | |
target_song = target_song[:, :target_length] | |
# pad last segment | |
else: | |
pad_length = self.segment_length - target_song.shape[-1] % self.segment_length | |
target_song = torch.cat((target_song, torch.zeros(2, pad_length)), axis=-1) | |
whole_batch_data = [] | |
batch_wise_data = [] | |
for cur_segment_idx in range(target_song.shape[-1]//self.segment_length): | |
batch_wise_data.append(target_song[..., cur_segment_idx*self.segment_length:(cur_segment_idx+1)*self.segment_length]) | |
if len(batch_wise_data)==self.batch_size: | |
whole_batch_data.append(torch.stack(batch_wise_data, dim=0)) | |
batch_wise_data = [] | |
if batch_wise_data: | |
whole_batch_data.append(torch.stack(batch_wise_data, dim=0)) | |
return whole_batch_data | |
# save current inference arguments | |
def save_args(self, params): | |
info = '\n[args]\n' | |
for sub_args in parser._action_groups: | |
if sub_args.title in ['positional arguments', 'optional arguments', 'options']: | |
continue | |
size_sub = len(sub_args._group_actions) | |
info += f' {sub_args.title} ({size_sub})\n' | |
for i, arg in enumerate(sub_args._group_actions): | |
prefix = '-' | |
info += f' {prefix} {arg.dest:20s}: {getattr(params, arg.dest)}\n' | |
info += '\n' | |
os.makedirs(self.output_dir, exist_ok=True) | |
record_path = f"{self.output_dir}feature_extraction_inference_configurations.txt" | |
f = open(record_path, 'w') | |
np.savetxt(f, [info], delimiter=" ", fmt="%s") | |
f.close() | |
if __name__ == '__main__': | |
''' Configurations for inferencing music effects encoder ''' | |
currentdir = os.path.dirname(os.path.realpath(__file__)) | |
default_ckpt_path = os.path.join(os.path.dirname(currentdir), 'weights', 'FXencoder_ps.pt') | |
import argparse | |
import yaml | |
parser = argparse.ArgumentParser() | |
directory_args = parser.add_argument_group('Directory args') | |
directory_args.add_argument('--target_dir', type=str, default='./samples/') | |
directory_args.add_argument('--output_dir', type=str, default=None, help='if no output_dir is specified (None), the results will be saved inside the target_dir') | |
directory_args.add_argument('--ckpt_path_enc', type=str, default=default_ckpt_path) | |
inference_args = parser.add_argument_group('Inference args') | |
inference_args.add_argument('--segment_length', type=int, default=44100*10) # segmentize input according to this duration | |
inference_args.add_argument('--batch_size', type=int, default=1) # for processing long audio | |
inference_args.add_argument('--inference_device', type=str, default='cpu', help="if this option is not set to 'cpu', inference will happen on gpu only if there is a detected one") | |
args = parser.parse_args() | |
# load network configurations | |
with open(os.path.join(currentdir, 'configs.yaml'), 'r') as f: | |
configs = yaml.full_load(f) | |
args.cfg_encoder = configs['Effects_Encoder']['default'] | |
# Extract features using pre-trained FXencoder | |
inference_encoder = FXencoder_Inference(args) | |
inference_encoder.save_averaged_embeddings() | |