|
""" |
|
Inference code of music style transfer |
|
of the work "Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects" |
|
|
|
Process : converts the mixing style of the input music recording to that of the refernce music. |
|
files inside the target directory should be organized as follow |
|
"path_to_data_directory"/"song_name_#1"/input.wav |
|
"path_to_data_directory"/"song_name_#1"/reference.wav |
|
... |
|
"path_to_data_directory"/"song_name_#n"/input.wav |
|
"path_to_data_directory"/"song_name_#n"/reference.wav |
|
where the 'input' and 'reference' should share the same names. |
|
""" |
|
import numpy as np |
|
from glob import glob |
|
import os |
|
import torch |
|
|
|
import sys |
|
currentdir = os.path.dirname(os.path.realpath(__file__)) |
|
sys.path.append(os.path.join(os.path.dirname(currentdir), "mixing_style_transfer")) |
|
from networks import FXencoder, TCNModel |
|
from data_loader import * |
|
import librosa |
|
import pyloudnorm |
|
|
|
|
|
|
|
class Mixing_Style_Transfer_Inference: |
|
def __init__(self, args, trained_w_ddp=True): |
|
if torch.cuda.is_available(): |
|
self.device = torch.device("cuda:0") |
|
else: |
|
self.device = torch.device("cpu") |
|
|
|
|
|
self.args = args |
|
self.segment_length = args.segment_length |
|
self.batch_size = args.batch_size |
|
self.sample_rate = 44100 |
|
self.time_in_seconds = int(args.segment_length // self.sample_rate) |
|
|
|
|
|
self.output_dir = args.target_dir if args.output_dir==None else args.output_dir |
|
self.target_dir = args.target_dir |
|
|
|
|
|
self.models = {} |
|
self.models['effects_encoder'] = FXencoder(args.cfg_encoder).to(self.device) |
|
self.models['mixing_converter'] = TCNModel(nparams=args.cfg_converter["condition_dimension"], \ |
|
ninputs=2, \ |
|
noutputs=2, \ |
|
nblocks=args.cfg_converter["nblocks"], \ |
|
dilation_growth=args.cfg_converter["dilation_growth"], \ |
|
kernel_size=args.cfg_converter["kernel_size"], \ |
|
channel_width=args.cfg_converter["channel_width"], \ |
|
stack_size=args.cfg_converter["stack_size"], \ |
|
cond_dim=args.cfg_converter["condition_dimension"], \ |
|
causal=args.cfg_converter["causal"]).to(self.device) |
|
|
|
ckpt_paths = {'effects_encoder' : args.ckpt_path_enc, \ |
|
'mixing_converter' : args.ckpt_path_conv} |
|
|
|
ddp = trained_w_ddp |
|
self.reload_weights(ckpt_paths, ddp=ddp) |
|
|
|
|
|
inference_dataset = Song_Dataset_Inference(args) |
|
self.data_loader = DataLoader(inference_dataset, \ |
|
batch_size=1, \ |
|
shuffle=False, \ |
|
num_workers=args.workers, \ |
|
drop_last=False) |
|
|
|
''' check stem-wise result ''' |
|
if not self.args.do_not_separate: |
|
os.environ['MKL_THREADING_LAYER'] = 'GNU' |
|
separate_file_names = [args.input_file_name, args.reference_file_name] |
|
if self.args.interpolation: |
|
separate_file_names.append(args.reference_file_name_2interpolate) |
|
for cur_idx, cur_inf_dir in enumerate(sorted(glob(f"{args.target_dir}*/"))): |
|
for cur_file_name in separate_file_names: |
|
cur_sep_file_path = os.path.join(cur_inf_dir, cur_file_name+'.wav') |
|
cur_sep_output_dir = os.path.join(cur_inf_dir, args.stem_level_directory_name) |
|
if os.path.exists(os.path.join(cur_sep_output_dir, self.args.separation_model, cur_file_name, 'drums.wav')): |
|
print(f'\talready separated current file : {cur_sep_file_path}') |
|
else: |
|
cur_cmd_line = f"demucs {cur_sep_file_path} -n {self.args.separation_model} -d {self.device} -o {cur_sep_output_dir}" |
|
os.system(cur_cmd_line) |
|
|
|
|
|
|
|
def reload_weights(self, ckpt_paths, ddp=True): |
|
for cur_model_name in self.models.keys(): |
|
checkpoint = torch.load(ckpt_paths[cur_model_name], map_location=self.device) |
|
|
|
from collections import OrderedDict |
|
new_state_dict = OrderedDict() |
|
for k, v in checkpoint["model"].items(): |
|
|
|
name = k[7:] if ddp else k |
|
new_state_dict[name] = v |
|
|
|
|
|
self.models[cur_model_name].load_state_dict(new_state_dict) |
|
|
|
print(f"---reloaded checkpoint weights : {cur_model_name} ---") |
|
|
|
|
|
|
|
def inference(self, input_track_path, reference_track_path): |
|
print("\n======= Start to inference music mixing style transfer =======") |
|
|
|
output_name_tag = 'output' if self.args.normalize_input else 'output_notnormed' |
|
|
|
for step, (input_stems, reference_stems, dir_name) in enumerate(self.data_loader): |
|
print(f"---inference file name : {dir_name[0]}---") |
|
cur_out_dir = dir_name[0].replace(self.target_dir, self.output_dir) |
|
os.makedirs(cur_out_dir, exist_ok=True) |
|
''' stem-level inference ''' |
|
inst_outputs = [] |
|
for cur_inst_idx, cur_inst_name in enumerate(self.args.instruments): |
|
print(f'\t{cur_inst_name}...') |
|
''' segmentize whole songs into batch ''' |
|
if len(input_stems[0][cur_inst_idx][0]) > self.args.segment_length: |
|
cur_inst_input_stem = self.batchwise_segmentization(input_stems[0][cur_inst_idx], \ |
|
dir_name[0], \ |
|
segment_length=self.args.segment_length, \ |
|
discard_last=False) |
|
else: |
|
cur_inst_input_stem = [input_stems[:, cur_inst_idx]] |
|
if len(reference_stems[0][cur_inst_idx][0]) > self.args.segment_length*2: |
|
cur_inst_reference_stem = self.batchwise_segmentization(reference_stems[0][cur_inst_idx], \ |
|
dir_name[0], \ |
|
segment_length=self.args.segment_length_ref, \ |
|
discard_last=False) |
|
else: |
|
cur_inst_reference_stem = [reference_stems[:, cur_inst_idx]] |
|
|
|
''' inference ''' |
|
|
|
infered_ref_data_list = [] |
|
for cur_ref_data in cur_inst_reference_stem: |
|
cur_ref_data = cur_ref_data.to(self.device) |
|
|
|
with torch.no_grad(): |
|
self.models["effects_encoder"].eval() |
|
reference_feature = self.models["effects_encoder"](cur_ref_data) |
|
infered_ref_data_list.append(reference_feature) |
|
|
|
infered_ref_data = torch.stack(infered_ref_data_list) |
|
infered_ref_data_avg = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0) |
|
|
|
|
|
infered_data_list = [] |
|
for cur_data in cur_inst_input_stem: |
|
cur_data = cur_data.to(self.device) |
|
with torch.no_grad(): |
|
self.models["mixing_converter"].eval() |
|
infered_data = self.models["mixing_converter"](cur_data, infered_ref_data_avg.unsqueeze(0)) |
|
infered_data_list.append(infered_data.cpu().detach()) |
|
|
|
|
|
for cur_idx, cur_batch_infered_data in enumerate(infered_data_list): |
|
cur_infered_data_sequential = torch.cat(torch.unbind(cur_batch_infered_data, dim=0), dim=-1) |
|
fin_data_out = cur_infered_data_sequential if cur_idx==0 else torch.cat((fin_data_out, cur_infered_data_sequential), dim=-1) |
|
|
|
fin_data_out_inst = fin_data_out[:, :input_stems[0][cur_inst_idx].shape[-1]].numpy() |
|
|
|
inst_outputs.append(fin_data_out_inst) |
|
|
|
if self.args.save_each_inst: |
|
sf.write(os.path.join(cur_out_dir, f"{cur_inst_name}_{output_name_tag}.wav"), fin_data_out_inst.transpose(-1, -2), self.args.sample_rate, 'PCM_16') |
|
|
|
|
|
fin_data_out_mix = sum(inst_outputs) |
|
|
|
|
|
meter = pyloudnorm.Meter(44100) |
|
loudness_out = meter.integrated_loudness(fin_data_out_mix.transpose(-1, -2)) |
|
reference_aud = load_wav_segment(reference_track_path, axis=1) |
|
loudness_ref = meter.integrated_loudness(reference_aud) |
|
|
|
fin_data_out_mix = pyloudnorm.normalize.loudness(fin_data_out_mix, loudness_out, loudness_ref) |
|
fin_data_out_mix = np.clip(fin_data_out_mix, -1., 1.) |
|
|
|
|
|
fin_output_path = os.path.join(cur_out_dir, f"mixture_{output_name_tag}.wav") |
|
sf.write(fin_output_path, fin_data_out_mix.transpose(-1, -2), self.args.sample_rate, 'PCM_16') |
|
|
|
return fin_output_path |
|
|
|
|
|
|
|
def inference_interpolation(self, ): |
|
print("\n======= Start to inference interpolation examples =======") |
|
|
|
output_name_tag = 'output_interpolation' if self.args.normalize_input else 'output_notnormed_interpolation' |
|
|
|
for step, (input_stems, reference_stems_A, reference_stems_B, dir_name) in enumerate(self.data_loader): |
|
print(f"---inference file name : {dir_name[0]}---") |
|
cur_out_dir = dir_name[0].replace(self.target_dir, self.output_dir) |
|
os.makedirs(cur_out_dir, exist_ok=True) |
|
''' stem-level inference ''' |
|
inst_outputs = [] |
|
for cur_inst_idx, cur_inst_name in enumerate(self.args.instruments): |
|
print(f'\t{cur_inst_name}...') |
|
''' segmentize whole song ''' |
|
|
|
interpolate_segment_length = input_stems[0][cur_inst_idx].shape[1] // self.args.interpolate_segments + 1 |
|
cur_inst_input_stem = self.batchwise_segmentization(input_stems[0][cur_inst_idx], \ |
|
dir_name[0], \ |
|
segment_length=interpolate_segment_length, \ |
|
discard_last=False) |
|
|
|
if len(reference_stems_A[0][cur_inst_idx][0]) > self.args.segment_length_ref: |
|
cur_inst_reference_stem_A = self.batchwise_segmentization(reference_stems_A[0][cur_inst_idx], \ |
|
dir_name[0], \ |
|
segment_length=self.args.segment_length_ref, \ |
|
discard_last=False) |
|
else: |
|
cur_inst_reference_stem_A = [reference_stems_A[:, cur_inst_idx]] |
|
if len(reference_stems_B[0][cur_inst_idx][0]) > self.args.segment_length_ref: |
|
cur_inst_reference_stem_B = self.batchwise_segmentization(reference_stems_B[0][cur_inst_idx], \ |
|
dir_name[0], \ |
|
segment_length=self.args.segment_length, \ |
|
discard_last=False) |
|
else: |
|
cur_inst_reference_stem_B = [reference_stems_B[:, cur_inst_idx]] |
|
|
|
''' inference ''' |
|
|
|
|
|
infered_ref_data_list = [] |
|
for cur_ref_data in cur_inst_reference_stem_A: |
|
cur_ref_data = cur_ref_data.to(self.device) |
|
|
|
with torch.no_grad(): |
|
self.models["effects_encoder"].eval() |
|
reference_feature = self.models["effects_encoder"](cur_ref_data) |
|
infered_ref_data_list.append(reference_feature) |
|
|
|
infered_ref_data = torch.stack(infered_ref_data_list) |
|
infered_ref_data_avg_A = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0) |
|
|
|
|
|
infered_ref_data_list = [] |
|
for cur_ref_data in cur_inst_reference_stem_B: |
|
cur_ref_data = cur_ref_data.to(self.device) |
|
|
|
with torch.no_grad(): |
|
self.models["effects_encoder"].eval() |
|
reference_feature = self.models["effects_encoder"](cur_ref_data) |
|
infered_ref_data_list.append(reference_feature) |
|
|
|
infered_ref_data = torch.stack(infered_ref_data_list) |
|
infered_ref_data_avg_B = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0) |
|
|
|
|
|
infered_data_list = [] |
|
for cur_idx, cur_data in enumerate(cur_inst_input_stem): |
|
cur_data = cur_data.to(self.device) |
|
|
|
cur_weight = (self.args.interpolate_segments-1-cur_idx) / (self.args.interpolate_segments-1) |
|
cur_ref_emb = cur_weight * infered_ref_data_avg_A + (1-cur_weight) * infered_ref_data_avg_B |
|
with torch.no_grad(): |
|
self.models["mixing_converter"].eval() |
|
infered_data = self.models["mixing_converter"](cur_data, cur_ref_emb.unsqueeze(0)) |
|
infered_data_list.append(infered_data.cpu().detach()) |
|
|
|
|
|
for cur_idx, cur_batch_infered_data in enumerate(infered_data_list): |
|
cur_infered_data_sequential = torch.cat(torch.unbind(cur_batch_infered_data, dim=0), dim=-1) |
|
fin_data_out = cur_infered_data_sequential if cur_idx==0 else torch.cat((fin_data_out, cur_infered_data_sequential), dim=-1) |
|
|
|
fin_data_out_inst = fin_data_out[:, :input_stems[0][cur_inst_idx].shape[-1]].numpy() |
|
inst_outputs.append(fin_data_out_inst) |
|
|
|
|
|
if self.args.save_each_inst: |
|
sf.write(os.path.join(cur_out_dir, f"{cur_inst_name}_{output_name_tag}.wav"), fin_data_out_inst.transpose(-1, -2), self.args.sample_rate, 'PCM_16') |
|
|
|
fin_data_out_mix = sum(inst_outputs) |
|
fin_output_path = os.path.join(cur_out_dir, f"mixture_{output_name_tag}.wav") |
|
sf.write(fin_output_path, fin_data_out_mix.transpose(-1, -2), self.args.sample_rate, 'PCM_16') |
|
|
|
return fin_output_path |
|
|
|
|
|
|
|
def batchwise_segmentization(self, target_song, song_name, segment_length, discard_last=False): |
|
assert target_song.shape[-1] >= self.args.segment_length, \ |
|
f"Error : Insufficient duration!\n\t \ |
|
Target song's length is shorter than segment length.\n\t \ |
|
Song name : {song_name}\n\t \ |
|
Consider changing the 'segment_length' or song with sufficient duration" |
|
|
|
|
|
if discard_last: |
|
target_length = target_song.shape[-1] - target_song.shape[-1] % segment_length |
|
target_song = target_song[:, :target_length] |
|
|
|
else: |
|
pad_length = segment_length - target_song.shape[-1] % segment_length |
|
target_song = torch.cat((target_song, torch.zeros(2, pad_length)), axis=-1) |
|
|
|
|
|
whole_batch_data = [] |
|
batch_wise_data = [] |
|
for cur_segment_idx in range(target_song.shape[-1]//segment_length): |
|
batch_wise_data.append(target_song[..., cur_segment_idx*segment_length:(cur_segment_idx+1)*segment_length]) |
|
if len(batch_wise_data)==self.args.batch_size: |
|
whole_batch_data.append(torch.stack(batch_wise_data, dim=0)) |
|
batch_wise_data = [] |
|
if batch_wise_data: |
|
whole_batch_data.append(torch.stack(batch_wise_data, dim=0)) |
|
|
|
return whole_batch_data |
|
|
|
|
|
|
|
def trim_audio(target_file_path, start_point_in_second=0, duration_in_second=30, sample_rate=44100): |
|
|
|
cur_aud, _ = librosa.load(target_file_path, sr=sample_rate, mono=False) |
|
sf.write(target_file_path, cur_aud.transpose(-1, -2), sample_rate, 'PCM_16') |
|
|
|
cur_wav_length = load_wav_length(target_file_path) |
|
if cur_wav_length < duration_in_second*sample_rate: |
|
return |
|
if cur_wav_length-start_point_in_second*sample_rate < duration_in_second*sample_rate: |
|
trimmed_audio = load_wav_segment(target_file_path, start_point=int(start_point_in_second*sample_rate), axis=1) |
|
else: |
|
trimmed_audio = load_wav_segment(target_file_path, start_point=int(start_point_in_second*sample_rate), duration=int(duration_in_second*sample_rate), axis=1) |
|
sf.write(target_file_path, trimmed_audio, sample_rate, 'PCM_16') |
|
|
|
|
|
def set_up(start_point_in_second=0, duration_in_second=30): |
|
os.environ['MASTER_ADDR'] = '127.0.0.1' |
|
os.environ["CUDA_VISIBLE_DEVICES"] = '0' |
|
os.environ['MASTER_PORT'] = '8888' |
|
|
|
def str2bool(v): |
|
if v.lower() in ('yes', 'true', 't', 'y', '1'): |
|
return True |
|
elif v.lower() in ('no', 'false', 'f', 'n', '0'): |
|
return False |
|
else: |
|
raise argparse.ArgumentTypeError('Boolean value expected.') |
|
|
|
''' Configurations for music mixing style transfer ''' |
|
currentdir = os.path.dirname(os.path.realpath(__file__)) |
|
default_ckpt_path_enc = os.path.join(os.path.dirname(currentdir), 'weights', 'FXencoder_ps.pt') |
|
default_ckpt_path_conv = os.path.join(os.path.dirname(currentdir), 'weights', 'MixFXcloner_ps.pt') |
|
default_norm_feature_path = os.path.join(os.path.dirname(currentdir), 'weights', 'musdb18_fxfeatures_eqcompimagegain.npy') |
|
|
|
import argparse |
|
import yaml |
|
parser = argparse.ArgumentParser() |
|
|
|
directory_args = parser.add_argument_group('Directory args') |
|
|
|
directory_args.add_argument('--target_dir', type=str, default='./yt_dir/') |
|
directory_args.add_argument('--output_dir', type=str, default=None, help='if no output_dir is specified (None), the results will be saved inside the target_dir') |
|
directory_args.add_argument('--input_file_name', type=str, default='input') |
|
directory_args.add_argument('--reference_file_name', type=str, default='reference') |
|
directory_args.add_argument('--reference_file_name_2interpolate', type=str, default='reference_B') |
|
|
|
directory_args.add_argument('--ckpt_path_enc', type=str, default=default_ckpt_path_enc) |
|
directory_args.add_argument('--ckpt_path_conv', type=str, default=default_ckpt_path_conv) |
|
directory_args.add_argument('--precomputed_normalization_feature', type=str, default=default_norm_feature_path) |
|
|
|
inference_args = parser.add_argument_group('Inference args') |
|
inference_args.add_argument('--sample_rate', type=int, default=44100) |
|
inference_args.add_argument('--segment_length', type=int, default=2**19) |
|
inference_args.add_argument('--segment_length_ref', type=int, default=2**19) |
|
|
|
inference_args.add_argument('--instruments', type=str2bool, default=["drums", "bass", "other", "vocals"], help='instrumental tracks to perform style transfer') |
|
inference_args.add_argument('--stem_level_directory_name', type=str, default='separated') |
|
inference_args.add_argument('--save_each_inst', type=str2bool, default=False) |
|
inference_args.add_argument('--do_not_separate', type=str2bool, default=False) |
|
inference_args.add_argument('--separation_model', type=str, default='htdemucs') |
|
|
|
inference_args.add_argument('--normalize_input', type=str2bool, default=True) |
|
inference_args.add_argument('--normalization_order', type=str2bool, default=['loudness', 'eq', 'compression', 'imager', 'loudness']) |
|
|
|
inference_args.add_argument('--interpolation', type=str2bool, default=False) |
|
inference_args.add_argument('--interpolate_segments', type=int, default=30) |
|
|
|
device_args = parser.add_argument_group('Device args') |
|
device_args.add_argument('--workers', type=int, default=1) |
|
device_args.add_argument('--batch_size', type=int, default=1) |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
with open(os.path.join(currentdir, 'configs.yaml'), 'r') as f: |
|
configs = yaml.full_load(f) |
|
args.cfg_encoder = configs['Effects_Encoder']['default'] |
|
args.cfg_converter = configs['TCN']['default'] |
|
|
|
return args |
|
|
|
|