jhtonyKoo commited on
Commit
f528768
·
1 Parent(s): 86c8cd3

Create style_transfer_hf.py

Browse files
Files changed (1) hide show
  1. inference/style_transfer_hf.py +390 -0
inference/style_transfer_hf.py ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Inference code of music style transfer
3
+ of the work "Music Mixing Style Transfer: A Contrastive Learning Approach to Disentangle Audio Effects"
4
+ Process : converts the mixing style of the input music recording to that of the refernce music.
5
+ files inside the target directory should be organized as follow
6
+ "path_to_data_directory"/"song_name_#1"/input.wav
7
+ "path_to_data_directory"/"song_name_#1"/reference.wav
8
+ ...
9
+ "path_to_data_directory"/"song_name_#n"/input.wav
10
+ "path_to_data_directory"/"song_name_#n"/reference.wav
11
+ where the 'input' and 'reference' should share the same names.
12
+ """
13
+ import numpy as np
14
+ from glob import glob
15
+ import os
16
+ import torch
17
+
18
+ import sys
19
+ currentdir = os.path.dirname(os.path.realpath(__file__))
20
+ sys.path.append(os.path.join(os.path.dirname(currentdir), "mixing_style_transfer"))
21
+ from networks import FXencoder, TCNModel
22
+ from data_loader import *
23
+
24
+
25
+
26
+ class Mixing_Style_Transfer_Inference:
27
+ def __init__(self, args, trained_w_ddp=True):
28
+ if args.inference_device!='cpu' and torch.cuda.is_available():
29
+ self.device = torch.device("cuda:0")
30
+ else:
31
+ self.device = torch.device("cpu")
32
+
33
+ # inference computational hyperparameters
34
+ self.segment_length = 2**19
35
+ self.batch_size = 1
36
+ self.sample_rate = 44100 # sampling rate should be 44100
37
+ self.time_in_seconds = int(self.segment_length // self.sample_rate)
38
+
39
+ # directory configuration
40
+ self.output_dir = "./output_mix_dir/"
41
+
42
+ # checkpoint weight paths
43
+ currentdir = os.path.dirname(os.path.realpath(__file__))
44
+ ckpt_path_enc = os.path.join(os.path.dirname(currentdir), 'weights', 'FXencoder_ps.pt')
45
+ ckpt_path_conv = os.path.join(os.path.dirname(currentdir), 'weights', 'MixFXcloner_ps.pt')
46
+ ckpt_path_mastering = os.path.join(os.path.dirname(currentdir), 'weights', 'MasterFXcloner_ps.pt')
47
+ norm_feature_path = os.path.join(os.path.dirname(currentdir), 'weights', 'musdb18_fxfeatures_eqcompimagegain.npy')
48
+
49
+ # load network configurations
50
+ with open(os.path.join(currentdir, 'configs.yaml'), 'r') as f:
51
+ configs = yaml.full_load(f)
52
+ cfg_encoder = configs['Effects_Encoder']['default']
53
+ cfg_converter = configs['TCN']['default']
54
+
55
+ # load model and its checkpoint weights
56
+ self.models = {}
57
+ self.models['effects_encoder'] = FXencoder(cfg_encoder).to(self.device)
58
+ self.models['mixing_converter'] = TCNModel(nparams=cfg_converter["condition_dimension"], \
59
+ ninputs=2, \
60
+ noutputs=2, \
61
+ nblocks=cfg_converter["nblocks"], \
62
+ dilation_growth=cfg_converter["dilation_growth"], \
63
+ kernel_size=cfg_converter["kernel_size"], \
64
+ channel_width=cfg_converter["channel_width"], \
65
+ stack_size=cfg_converter["stack_size"], \
66
+ cond_dim=cfg_converter["condition_dimension"], \
67
+ causal=cfg_converter["causal"]).to(self.device)
68
+
69
+ ckpt_paths = {'effects_encoder' : ckpt_path_enc, \
70
+ 'mixing_converter' : ckpt_path_conv}
71
+ # reload saved model weights
72
+ ddp = trained_w_ddp
73
+ self.reload_weights(ckpt_paths, ddp=ddp)
74
+
75
+ ''' check stem-wise result '''
76
+ if not self.args.do_not_separate:
77
+ os.environ['MKL_THREADING_LAYER'] = 'GNU'
78
+ separate_file_names = [args.input_file_name, args.reference_file_name]
79
+ if self.args.interpolation:
80
+ separate_file_names.append(args.reference_file_name_2interpolate)
81
+ for cur_idx, cur_inf_dir in enumerate(sorted(glob(f"{args.target_dir}*/"))):
82
+ for cur_file_name in separate_file_names:
83
+ cur_sep_file_path = os.path.join(cur_inf_dir, cur_file_name+'.wav')
84
+ cur_sep_output_dir = os.path.join(cur_inf_dir, args.stem_level_directory_name)
85
+ if os.path.exists(os.path.join(cur_sep_output_dir, self.args.separation_model, cur_file_name, 'drums.wav')):
86
+ print(f'\talready separated current file : {cur_sep_file_path}')
87
+ else:
88
+ cur_cmd_line = f"demucs {cur_sep_file_path} -n {self.args.separation_model} -d {self.args.separation_device} -o {cur_sep_output_dir}"
89
+ os.system(cur_cmd_line)
90
+
91
+
92
+ # reload model weights from the target checkpoint path
93
+ def reload_weights(self, ckpt_paths, ddp=True):
94
+ for cur_model_name in self.models.keys():
95
+ checkpoint = torch.load(ckpt_paths[cur_model_name], map_location=self.device)
96
+
97
+ from collections import OrderedDict
98
+ new_state_dict = OrderedDict()
99
+ for k, v in checkpoint["model"].items():
100
+ # remove `module.` if the model was trained with DDP
101
+ name = k[7:] if ddp else k
102
+ new_state_dict[name] = v
103
+
104
+ # load params
105
+ self.models[cur_model_name].load_state_dict(new_state_dict)
106
+
107
+ print(f"---reloaded checkpoint weights : {cur_model_name} ---")
108
+
109
+
110
+ # Inference whole song
111
+ def inference(self, ):
112
+ print("\n======= Start to inference music mixing style transfer =======")
113
+ # normalized input
114
+ output_name_tag = 'output' if self.args.normalize_input else 'output_notnormed'
115
+
116
+ for step, (input_stems, reference_stems, dir_name) in enumerate(self.data_loader):
117
+ print(f"---inference file name : {dir_name[0]}---")
118
+ cur_out_dir = dir_name[0].replace(self.target_dir, self.output_dir)
119
+ os.makedirs(cur_out_dir, exist_ok=True)
120
+ ''' stem-level inference '''
121
+ inst_outputs = []
122
+ for cur_inst_idx, cur_inst_name in enumerate(self.args.instruments):
123
+ print(f'\t{cur_inst_name}...')
124
+ ''' segmentize whole songs into batch '''
125
+ if len(input_stems[0][cur_inst_idx][0]) > self.args.segment_length:
126
+ cur_inst_input_stem = self.batchwise_segmentization(input_stems[0][cur_inst_idx], \
127
+ dir_name[0], \
128
+ segment_length=self.args.segment_length, \
129
+ discard_last=False)
130
+ else:
131
+ cur_inst_input_stem = [input_stems[:, cur_inst_idx]]
132
+ if len(reference_stems[0][cur_inst_idx][0]) > self.args.segment_length*2:
133
+ cur_inst_reference_stem = self.batchwise_segmentization(reference_stems[0][cur_inst_idx], \
134
+ dir_name[0], \
135
+ segment_length=self.args.segment_length_ref, \
136
+ discard_last=False)
137
+ else:
138
+ cur_inst_reference_stem = [reference_stems[:, cur_inst_idx]]
139
+
140
+ ''' inference '''
141
+ # first extract reference style embedding
142
+ infered_ref_data_list = []
143
+ for cur_ref_data in cur_inst_reference_stem:
144
+ cur_ref_data = cur_ref_data.to(self.device)
145
+ # Effects Encoder inference
146
+ with torch.no_grad():
147
+ self.models["effects_encoder"].eval()
148
+ reference_feature = self.models["effects_encoder"](cur_ref_data)
149
+ infered_ref_data_list.append(reference_feature)
150
+ # compute average value from the extracted exbeddings
151
+ infered_ref_data = torch.stack(infered_ref_data_list)
152
+ infered_ref_data_avg = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0)
153
+
154
+ # mixing style converter
155
+ infered_data_list = []
156
+ for cur_data in cur_inst_input_stem:
157
+ cur_data = cur_data.to(self.device)
158
+ with torch.no_grad():
159
+ self.models["mixing_converter"].eval()
160
+ infered_data = self.models["mixing_converter"](cur_data, infered_ref_data_avg.unsqueeze(0))
161
+ infered_data_list.append(infered_data.cpu().detach())
162
+
163
+ # combine back to whole song
164
+ for cur_idx, cur_batch_infered_data in enumerate(infered_data_list):
165
+ cur_infered_data_sequential = torch.cat(torch.unbind(cur_batch_infered_data, dim=0), dim=-1)
166
+ fin_data_out = cur_infered_data_sequential if cur_idx==0 else torch.cat((fin_data_out, cur_infered_data_sequential), dim=-1)
167
+ # final output of current instrument
168
+ fin_data_out_inst = fin_data_out[:, :input_stems[0][cur_inst_idx].shape[-1]].numpy()
169
+
170
+ inst_outputs.append(fin_data_out_inst)
171
+ # save output of each instrument
172
+ if self.args.save_each_inst:
173
+ sf.write(os.path.join(cur_out_dir, f"{cur_inst_name}_{output_name_tag}.wav"), fin_data_out_inst.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
174
+ # remix
175
+ fin_data_out_mix = sum(inst_outputs)
176
+ sf.write(os.path.join(cur_out_dir, f"mixture_{output_name_tag}.wav"), fin_data_out_mix.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
177
+
178
+
179
+ # Inference whole song
180
+ def inference_interpolation(self, ):
181
+ print("\n======= Start to inference interpolation examples =======")
182
+ # normalized input
183
+ output_name_tag = 'output_interpolation' if self.args.normalize_input else 'output_notnormed_interpolation'
184
+
185
+ for step, (input_stems, reference_stems_A, reference_stems_B, dir_name) in enumerate(self.data_loader):
186
+ print(f"---inference file name : {dir_name[0]}---")
187
+ cur_out_dir = dir_name[0].replace(self.target_dir, self.output_dir)
188
+ os.makedirs(cur_out_dir, exist_ok=True)
189
+ ''' stem-level inference '''
190
+ inst_outputs = []
191
+ for cur_inst_idx, cur_inst_name in enumerate(self.args.instruments):
192
+ print(f'\t{cur_inst_name}...')
193
+ ''' segmentize whole song '''
194
+ # segmentize input according to number of interpolating segments
195
+ interpolate_segment_length = input_stems[0][cur_inst_idx].shape[1] // self.args.interpolate_segments + 1
196
+ cur_inst_input_stem = self.batchwise_segmentization(input_stems[0][cur_inst_idx], \
197
+ dir_name[0], \
198
+ segment_length=interpolate_segment_length, \
199
+ discard_last=False)
200
+ # batchwise segmentize 2 reference tracks
201
+ if len(reference_stems_A[0][cur_inst_idx][0]) > self.args.segment_length_ref:
202
+ cur_inst_reference_stem_A = self.batchwise_segmentization(reference_stems_A[0][cur_inst_idx], \
203
+ dir_name[0], \
204
+ segment_length=self.args.segment_length_ref, \
205
+ discard_last=False)
206
+ else:
207
+ cur_inst_reference_stem_A = [reference_stems_A[:, cur_inst_idx]]
208
+ if len(reference_stems_B[0][cur_inst_idx][0]) > self.args.segment_length_ref:
209
+ cur_inst_reference_stem_B = self.batchwise_segmentization(reference_stems_B[0][cur_inst_idx], \
210
+ dir_name[0], \
211
+ segment_length=self.args.segment_length, \
212
+ discard_last=False)
213
+ else:
214
+ cur_inst_reference_stem_B = [reference_stems_B[:, cur_inst_idx]]
215
+
216
+ ''' inference '''
217
+ # first extract reference style embeddings
218
+ # reference A
219
+ infered_ref_data_list = []
220
+ for cur_ref_data in cur_inst_reference_stem_A:
221
+ cur_ref_data = cur_ref_data.to(self.device)
222
+ # Effects Encoder inference
223
+ with torch.no_grad():
224
+ self.models["effects_encoder"].eval()
225
+ reference_feature = self.models["effects_encoder"](cur_ref_data)
226
+ infered_ref_data_list.append(reference_feature)
227
+ # compute average value from the extracted exbeddings
228
+ infered_ref_data = torch.stack(infered_ref_data_list)
229
+ infered_ref_data_avg_A = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0)
230
+
231
+ # reference B
232
+ infered_ref_data_list = []
233
+ for cur_ref_data in cur_inst_reference_stem_B:
234
+ cur_ref_data = cur_ref_data.to(self.device)
235
+ # Effects Encoder inference
236
+ with torch.no_grad():
237
+ self.models["effects_encoder"].eval()
238
+ reference_feature = self.models["effects_encoder"](cur_ref_data)
239
+ infered_ref_data_list.append(reference_feature)
240
+ # compute average value from the extracted exbeddings
241
+ infered_ref_data = torch.stack(infered_ref_data_list)
242
+ infered_ref_data_avg_B = torch.mean(infered_ref_data.reshape(infered_ref_data.shape[0]*infered_ref_data.shape[1], infered_ref_data.shape[2]), axis=0)
243
+
244
+ # mixing style converter
245
+ infered_data_list = []
246
+ for cur_idx, cur_data in enumerate(cur_inst_input_stem):
247
+ cur_data = cur_data.to(self.device)
248
+ # perform linear interpolation on embedding space
249
+ cur_weight = (self.args.interpolate_segments-1-cur_idx) / (self.args.interpolate_segments-1)
250
+ cur_ref_emb = cur_weight * infered_ref_data_avg_A + (1-cur_weight) * infered_ref_data_avg_B
251
+ with torch.no_grad():
252
+ self.models["mixing_converter"].eval()
253
+ infered_data = self.models["mixing_converter"](cur_data, cur_ref_emb.unsqueeze(0))
254
+ infered_data_list.append(infered_data.cpu().detach())
255
+
256
+ # combine back to whole song
257
+ for cur_idx, cur_batch_infered_data in enumerate(infered_data_list):
258
+ cur_infered_data_sequential = torch.cat(torch.unbind(cur_batch_infered_data, dim=0), dim=-1)
259
+ fin_data_out = cur_infered_data_sequential if cur_idx==0 else torch.cat((fin_data_out, cur_infered_data_sequential), dim=-1)
260
+ # final output of current instrument
261
+ fin_data_out_inst = fin_data_out[:, :input_stems[0][cur_inst_idx].shape[-1]].numpy()
262
+ inst_outputs.append(fin_data_out_inst)
263
+
264
+ # save output of each instrument
265
+ if self.args.save_each_inst:
266
+ sf.write(os.path.join(cur_out_dir, f"{cur_inst_name}_{output_name_tag}.wav"), fin_data_out_inst.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
267
+ # remix
268
+ fin_data_out_mix = sum(inst_outputs)
269
+ sf.write(os.path.join(cur_out_dir, f"mixture_{output_name_tag}.wav"), fin_data_out_mix.transpose(-1, -2), self.args.sample_rate, 'PCM_16')
270
+
271
+
272
+ # function that segmentize an entire song into batch
273
+ def batchwise_segmentization(self, target_song, song_name, segment_length, discard_last=False):
274
+ assert target_song.shape[-1] >= self.args.segment_length, \
275
+ f"Error : Insufficient duration!\n\t \
276
+ Target song's length is shorter than segment length.\n\t \
277
+ Song name : {song_name}\n\t \
278
+ Consider changing the 'segment_length' or song with sufficient duration"
279
+
280
+ # discard restovers (last segment)
281
+ if discard_last:
282
+ target_length = target_song.shape[-1] - target_song.shape[-1] % segment_length
283
+ target_song = target_song[:, :target_length]
284
+ # pad last segment
285
+ else:
286
+ pad_length = segment_length - target_song.shape[-1] % segment_length
287
+ target_song = torch.cat((target_song, torch.zeros(2, pad_length)), axis=-1)
288
+
289
+ # segmentize according to the given segment_length
290
+ whole_batch_data = []
291
+ batch_wise_data = []
292
+ for cur_segment_idx in range(target_song.shape[-1]//segment_length):
293
+ batch_wise_data.append(target_song[..., cur_segment_idx*segment_length:(cur_segment_idx+1)*segment_length])
294
+ if len(batch_wise_data)==self.args.batch_size:
295
+ whole_batch_data.append(torch.stack(batch_wise_data, dim=0))
296
+ batch_wise_data = []
297
+ if batch_wise_data:
298
+ whole_batch_data.append(torch.stack(batch_wise_data, dim=0))
299
+
300
+ return whole_batch_data
301
+
302
+
303
+ # save current inference arguments
304
+ def save_args(self, params):
305
+ info = '\n[args]\n'
306
+ for sub_args in parser._action_groups:
307
+ if sub_args.title in ['positional arguments', 'optional arguments', 'options']:
308
+ continue
309
+ size_sub = len(sub_args._group_actions)
310
+ info += f' {sub_args.title} ({size_sub})\n'
311
+ for i, arg in enumerate(sub_args._group_actions):
312
+ prefix = '-'
313
+ info += f' {prefix} {arg.dest:20s}: {getattr(params, arg.dest)}\n'
314
+ info += '\n'
315
+
316
+ os.makedirs(self.output_dir, exist_ok=True)
317
+ record_path = f"{self.output_dir}style_transfer_inference_configurations.txt"
318
+ f = open(record_path, 'w')
319
+ np.savetxt(f, [info], delimiter=" ", fmt="%s")
320
+ f.close()
321
+
322
+
323
+
324
+ if __name__ == '__main__':
325
+ os.environ['MASTER_ADDR'] = '127.0.0.1'
326
+ os.environ["CUDA_VISIBLE_DEVICES"] = '0'
327
+ os.environ['MASTER_PORT'] = '8888'
328
+
329
+ def str2bool(v):
330
+ if v.lower() in ('yes', 'true', 't', 'y', '1'):
331
+ return True
332
+ elif v.lower() in ('no', 'false', 'f', 'n', '0'):
333
+ return False
334
+ else:
335
+ raise argparse.ArgumentTypeError('Boolean value expected.')
336
+
337
+ ''' Configurations for music mixing style transfer '''
338
+
339
+ import argparse
340
+ import yaml
341
+ parser = argparse.ArgumentParser()
342
+
343
+ directory_args = parser.add_argument_group('Directory args')
344
+ # directory paths
345
+ directory_args.add_argument('--target_dir', type=str, default='./samples/style_transfer/')
346
+ directory_args.add_argument('--output_dir', type=str, default=None, help='if no output_dir is specified (None), the results will be saved inside the target_dir')
347
+ directory_args.add_argument('--input_file_name', type=str, default='input')
348
+ directory_args.add_argument('--reference_file_name', type=str, default='reference')
349
+ directory_args.add_argument('--reference_file_name_2interpolate', type=str, default='reference_B')
350
+ # saved weights
351
+ directory_args.add_argument('--ckpt_path_enc', type=str, default=default_ckpt_path_enc)
352
+ directory_args.add_argument('--ckpt_path_conv', type=str, default=default_ckpt_path_conv)
353
+ directory_args.add_argument('--precomputed_normalization_feature', type=str, default=default_norm_feature_path)
354
+
355
+ inference_args = parser.add_argument_group('Inference args')
356
+ inference_args.add_argument('--sample_rate', type=int, default=44100)
357
+ inference_args.add_argument('--segment_length', type=int, default=2**19) # segmentize input according to this duration
358
+ inference_args.add_argument('--segment_length_ref', type=int, default=2**19) # segmentize reference according to this duration
359
+ # stem-level instruments & separation
360
+ inference_args.add_argument('--instruments', type=str2bool, default=["drums", "bass", "other", "vocals"], help='instrumental tracks to perform style transfer')
361
+ inference_args.add_argument('--stem_level_directory_name', type=str, default='separated')
362
+ inference_args.add_argument('--save_each_inst', type=str2bool, default=False)
363
+ inference_args.add_argument('--do_not_separate', type=str2bool, default=False)
364
+ inference_args.add_argument('--separation_model', type=str, default='mdx_extra')
365
+ # FX normalization
366
+ inference_args.add_argument('--normalize_input', type=str2bool, default=True)
367
+ inference_args.add_argument('--normalization_order', type=str2bool, default=['loudness', 'eq', 'compression', 'imager', 'loudness']) # Effects to be normalized, order matters
368
+ # interpolation
369
+ inference_args.add_argument('--interpolation', type=str2bool, default=False)
370
+ inference_args.add_argument('--interpolate_segments', type=int, default=30)
371
+
372
+ device_args = parser.add_argument_group('Device args')
373
+ device_args.add_argument('--workers', type=int, default=1)
374
+ device_args.add_argument('--inference_device', type=str, default='gpu', help="if this option is not set to 'cpu', inference will happen on gpu only if there is a detected one")
375
+ device_args.add_argument('--batch_size', type=int, default=1) # for processing long audio
376
+ device_args.add_argument('--separation_device', type=str, default='cpu', help="device for performing source separation using Demucs")
377
+
378
+ args = parser.parse_args()
379
+
380
+
381
+
382
+ # Perform music mixing style transfer
383
+ inference_style_transfer = Mixing_Style_Transfer_Inference(args)
384
+ if args.interpolation:
385
+ inference_style_transfer.inference_interpolation()
386
+ else:
387
+ inference_style_transfer.inference()
388
+
389
+
390
+