File size: 10,725 Bytes
7f7285f
 
 
 
 
 
 
 
964af23
7f7285f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964af23
7f7285f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# -*- coding:utf-8  -*-

"""
@Last modified date : 2020/12/23
"""

import re
import nltk
import torch.cuda
from nltk.stem import WordNetLemmatizer
from allennlp.predictors.predictor import Predictor

nltk.download('wordnet')
nltk.download('stopwords')


def deal_bracket(text, restore, leading_ent=None):
    if leading_ent:
        leading_ent = ' '.join(leading_ent.split('_'))
        text = f'Things about {leading_ent}: ' + text
    if restore:
        text = text.replace('-LRB-', '(').replace('-RRB-', ')')
        text = text.replace('LRB', '(').replace('RRB', ')')
    return text


def refine_entity(entity):
    entity = re.sub(r'-LRB- .+ -RRB-$', '', entity)
    entity = re.sub(r'LRB .+ RRB$', '', entity)
    entity = re.sub(r'_', ' ', entity)
    entity = re.sub(r'\s+', ' ', entity)
    return entity.strip()


def find_sub_seq(seq_a, seq_b, shift=0, uncased=False, lemmatizer=None):
    if uncased:
        seq_a = [token.lower() for token in seq_a]
        seq_b = [token.lower() for token in seq_b]
    if lemmatizer is not None:
        seq_a = [lemmatizer.lemmatize(token) for token in seq_a]
        seq_b = [lemmatizer.lemmatize(token) for token in seq_b]
    for i in range(shift, len(seq_a)):
        if seq_a[i:i+len(seq_b)] == seq_b:
            return i, i + len(seq_b)
    return -1, -1


def is_sub_seq(seq_start, seq_end, all_seqs):
    for start, end, is_candidate in all_seqs:
        if start <= seq_start < seq_end <= end:
            return start, end, is_candidate
    return None


# extract named entity with B-I-L-U-O schema
def extract_named_entity(tags):
    all_NEs = []
    ne_type, ne_start = '', -1
    for i, t in enumerate(tags):
        if t == 'O':
            ne_type, ne_start = '', -1
            continue
        t1, t2 = t.split('-')
        if t1 == 'B':
            ne_type, ne_start = t2, i
        elif t1 == 'I' and t2 != ne_type:
            ne_type, ne_start = '', -1
        elif t1 == 'L' and t2 != ne_type:
            ne_type, ne_start = '', -1
        elif t1 == 'L' and t2 == ne_type:
            all_NEs.append((ne_start, i + 1, False))
            ne_type, ne_start = '', -1
        elif t1 == 'U':
            all_NEs.append((i, i + 1, False))
            ne_type, ne_start = '', -1

    return all_NEs


def refine_results(tokens, spans, stopwords):
    all_spans = []
    for span_start, span_end, is_candidate in spans:
        # remove stopwords
        if not is_candidate:
            while span_start < span_end and tokens[span_start].lower() in stopwords:
                span_start += 1
            if span_start >= span_end:
                continue

        # add prefix
        if span_start > 0 and tokens[span_start - 1] in ['a', 'an', 'A', 'An', 'the', 'The']:
            span_start -= 1

        # convert token-level index into char-level index
        span = ' '.join(tokens[span_start:span_end])
        span_start = len(' '.join(tokens[:span_start])) + 1 * min(1, span_start)  # 1 for blank
        span_end = span_start + len(span)

        all_spans.append((span, span_start, span_end))
    all_spans = sorted(all_spans, key=lambda x: (x[1], x[1] - x[2]))

    # remove overlap
    refined_spans = []
    for span, span_start, span_end in all_spans:
        flag = True
        for _, start, end in refined_spans:
            if start <= span_start < span_end <= end:
                flag = False
                break
        if flag:
            refined_spans.append((span, span_start, span_end))

    return refined_spans


class SentenceParser:
    def __init__(self, device='cuda' if torch.cuda.is_available() else 'cpu',
                 ner_path="https://storage.googleapis.com/allennlp-public-models/ner-model-2020.02.10.tar.gz",
                 cp_path="https://storage.googleapis.com/allennlp-public-models/elmo-constituency-parser-2020.02.10.tar.gz"):
        self.device = self.parse_device(device)
        self.ner = Predictor.from_path(ner_path, cuda_device=self.device)
        print('* ner loaded')
        self.cp = Predictor.from_path(cp_path, cuda_device=self.device)
        print('* constituency parser loaded')
        self.lemmatizer = WordNetLemmatizer()

        # some heuristic rules can be added here
        self.stopwords = set(nltk.corpus.stopwords.words('english'))
        self.stopwords.update({'-', '\'s', 'try', 'tries', 'tried', 'trying',
                               'become', 'becomes', 'became', 'becoming',
                               'make', 'makes', 'made', 'making', 'call', 'called', 'calling',
                               'put', 'ever', 'something', 'someone', 'sometime'})
        self.special_tokens = ['only', 'most', 'before', 'after', 'behind']
        for token in self.special_tokens:
            if token in self.stopwords: self.stopwords.remove(token)
        if 'won' in self.stopwords: self.stopwords.remove('won')
        if 'own' in self.stopwords: self.stopwords.remove('own')

    def parse_device(self, device):
        if 'cpu' in device:
            return -1
        else:
            dev = re.findall('\d+', device)
            return 0 if len(dev) == 0 else int(dev[0])

    def identify_NPs(self, text, candidate_NPs=None):
        text = re.sub(r'\s+', ' ', text).strip()
        if len(text) == 0: return {'text': '', 'NPs': [], 'verbs': [], 'adjs': []}

        cp_outputs = self.cp.predict(text)
        ner_outputs = self.ner.predict(text)
        tokens = cp_outputs['tokens']
        pos_tags = cp_outputs['pos_tags']
        ner_tags = ner_outputs['tags']
        tree = cp_outputs['hierplane_tree']['root']

        # extract candidate noun phrases passed by user with token index
        all_NPs = []
        candidate_NPs = [refine_entity(np).split() for np in candidate_NPs] if candidate_NPs else []
        for np in sorted(candidate_NPs, key=len, reverse=True):
            np_start, np_end = find_sub_seq(tokens, np, 0, uncased=True, lemmatizer=self.lemmatizer)
            while np_start != -1 and np_end != -1:
                if not is_sub_seq(np_start, np_end, all_NPs):
                    all_NPs.append((np_start, np_end, True))
                np_start, np_end = find_sub_seq(tokens, np, np_end, uncased=True, lemmatizer=self.lemmatizer)

        # extract noun phrases from tree
        def _get_bottom_NPs(children):
            if 'children' not in children:
                return None
            if {'NP', 'OP', 'XP', 'QP'} & set(children['attributes']):
                is_bottom = True
                for child in children['children']:
                    if 'children' in child:
                        is_bottom = False
                if is_bottom:
                    bottom_NPs.append(children['word'].split())
                else:
                    for child in children['children']:
                        _get_bottom_NPs(child)
            else:
                for child in children['children']:
                    _get_bottom_NPs(child)
        bottom_NPs = []
        _get_bottom_NPs(tree)

        # find token indices of noun phrases
        np_index = -1
        for np in bottom_NPs:
            np_start, np_end = find_sub_seq(tokens, np, np_index + 1)
            if not is_sub_seq(np_start, np_end, all_NPs):
                all_NPs.append((np_start, np_end, False))
            np_index = np_end

        # extract named entities with token index
        all_NEs = extract_named_entity(ner_tags)

        # extract verbs with token index
        all_verbs = []
        for i, pos in enumerate(pos_tags):
            if pos[0] == 'V':
                if not is_sub_seq(i, i + 1, all_NPs) and not is_sub_seq(i, i + 1, all_NEs):
                    all_verbs.append((i, i + 1, False))

        # extract modifiers with token index
        all_modifiers = []
        for i, (token, pos) in enumerate(zip(tokens, pos_tags)):
            if pos in ['JJ', 'RB']:  # adj. and adv.
                if not is_sub_seq(i, i + 1, all_NPs) and not is_sub_seq(i, i + 1, all_NEs):
                    all_modifiers.append((i, i + 1, False))
            elif token in self.special_tokens:
                if not is_sub_seq(i, i + 1, all_NPs) and not is_sub_seq(i, i + 1, all_NEs):
                    all_modifiers.append((i, i + 1, False))

        # split noun phrases with named entities
        all_spans = []
        for np_start, np_end, np_is_candidate in all_NPs:
            if np_is_candidate:  # candidate noun phrases will be preserved
                all_spans.append((np_start, np_end, np_is_candidate))
            else:
                match = is_sub_seq(np_start, np_end, all_NEs)
                if match:  # if a noun phrase is a sub span of a named entity, the named entity will be preserved
                    all_spans.append(match)
                else:  # else if a named entity is a sub span of a noun phrase, the noun phrase will be split
                    index = np_start
                    for ne_start, ne_end, ne_is_candidate in all_NEs:
                        if np_start <= ne_start < ne_end <= np_end:
                            all_modifiers.append((index, ne_start, False))
                            all_spans.append((ne_start, ne_end, ne_is_candidate))
                            index = ne_end
                    all_spans.append((index, np_end, False))

        # named entities without overlapping
        for ne_start, ne_end, is_candidate in all_NEs:
            if not is_sub_seq(ne_start, ne_end, all_spans):
                all_spans.append((ne_start, ne_end, is_candidate))

        all_spans = refine_results(tokens, all_spans, self.stopwords)
        all_verbs = refine_results(tokens, all_verbs, self.stopwords)
        all_modifiers = refine_results(tokens, all_modifiers, self.stopwords)

        return {'text': tree['word'], 'NPs': all_spans, 'verbs': all_verbs, 'adjs': all_modifiers}


if __name__ == '__main__':
    import json

    print('Initializing sentence parser.')
    client = SentenceParser(device='cpu')

    print('Parsing sentence.')
    sentence = "The Africa Cup of Nations is held in odd - numbered years due to conflict with the World Cup . "
    entities = ['Africa Cup of Nations', 'Africa_Cup_of_Nations', 'Africa Cup', 'Africa_Cup']
    results = client.identify_NPs(sentence, entities)
    print(json.dumps(results, ensure_ascii=False, indent=4))

    # import random
    # from tqdm import tqdm
    # from utils import read_json_lines, save_json
    #
    # print('Parsing file.')
    # results = []
    # data = list(read_json_lines('data/train.jsonl'))
    # random.shuffle(data)
    # for entry in tqdm(data[:100]):
    #     results.append(client.identify_NPs(entry['claim']))
    # save_json(results, 'data/results.json')