File size: 26,722 Bytes
7f7285f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20e9c0d
 
7f7285f
 
20e9c0d
 
7f7285f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f18943d
7f7285f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import glob
import argparse
import logging
import random
import torch
import numpy as np
from tqdm import tqdm
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from transformers import (
    AutoConfig,
    AutoTokenizer
)
from transformers import WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup
import tensorflow as tf
from pytorch_lightning.loggers import WandbLogger

try:
    from .modules.data_processor import DataProcessor
    from .plm_checkers import BertChecker, RobertaChecker
    from .utils import init_logger, compute_metrics, set_seed
except:
    from modules.data_processor import DataProcessor
    from plm_checkers import BertChecker, RobertaChecker
    from utils import init_logger, compute_metrics, set_seed

try:
    from torch.utils.tensorboard import SummaryWriter
except ImportError:
    from tensorboardX import SummaryWriter

mAutoModel = {
    'bert': BertChecker,
    'roberta': RobertaChecker,
}

logger = logging.getLogger(__name__)


def train(args, data_processor, model, tokenizer):
    """ Train the model """
    global wdblogger
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    tf.io.gfile.makedirs(os.path.dirname(args.output_dir))
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_dataset = data_processor.load_and_cache_data("train", tokenizer, args.data_tag)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler,
                                  drop_last=True,
                                  batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ["bias", "LayerNorm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {
            "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
            "weight_decay": 0.0
        },
    ]
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )

    # Train!
    logger.info("***** Running training *****")
    logger.info("Num examples = %d", len(train_dataset))
    logger.info("Num Epochs = %d", args.num_train_epochs)
    logger.info("Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
    logger.info(
        "Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    tr_loss2, logging_loss2 = 0.0, 0.0
    tr_loss3, logging_loss3 = 0.0, 0.0
    set_seed(args)  # Added here for reproductibility
    model.zero_grad()
    for _ in range(int(args.num_train_epochs)):
        all_loss = 0.0
        all_accuracy = 0.0
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                "claim_input_ids": batch[0],
                "claim_attention_mask": batch[1],
                "qa_input_ids_list": batch[3],
                "qa_attention_mask_list": batch[4],
                "nli_labels": batch[-2],
                "labels": batch[-1],
            }
            if args.model_type != "distilbert":
                # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
                inputs["claim_token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None
                inputs["qa_token_type_ids_list"] = batch[5] if args.model_type in ["bert", "xlnet", "albert"] else None

            outputs = model(**inputs)
            loss, _loss2, logits = outputs[0], outputs[1], outputs[2]
            loss2, loss3 = _loss2

            if args.n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training
                loss2 = loss2.mean()
                loss3 = loss3.mean()
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
                loss2 = loss2 / args.gradient_accumulation_steps
                loss3 = loss3 / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()

            tr_loss += loss.item()
            tr_loss2 += loss2.item()
            tr_loss3 += loss3.item()

            all_loss += loss.detach().cpu().numpy() * args.gradient_accumulation_steps
            all_accuracy += np.mean(
                inputs["labels"].detach().cpu().numpy() == logits.detach().cpu().numpy().argmax(axis=-1)
            )
            description = "Global step: {:>6}, Loss: {:>.6f}, Accuracy: {:>.6f}".format(
                global_step,
                all_loss / (step + 1),
                all_accuracy / (step + 1),
            )
            epoch_iterator.set_description(description)
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                # Log metrics
                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Only evaluate when single GPU otherwise metrics may not average well
                    if args.local_rank == -1 and args.evaluate_during_training:
                        results = evaluate(args, data_processor, model, tokenizer)
                        for key, value in results.items():
                            logger.warning(f"Step: {global_step}, eval_{key}: {value}")
                            wdblogger.log_metrics({"eval_{}".format(key): value}, global_step)
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    wdblogger.log_metrics({"lr": scheduler.get_lr()[0]}, global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
                    wdblogger.log_metrics({"loss": (tr_loss - logging_loss) / args.logging_steps}, global_step)
                    wdblogger.log_metrics({"loss2": (tr_loss2 - logging_loss2) / args.logging_steps}, global_step)
                    wdblogger.log_metrics({"loss3": (tr_loss3 - logging_loss3) / args.logging_steps}, global_step)

                    logging_loss = tr_loss
                    logging_loss2 = tr_loss2
                    logging_loss3 = tr_loss3
                    wdblogger.save()

                # Save model checkpoint
                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    # Take care of distributed/parallel training
                    model_to_save = model.module if hasattr(model, "module") else model
                    model_to_save.save_pretrained(output_dir)
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to %s", output_dir)

            if 0 < args.max_steps < global_step:
                epoch_iterator.close()
                break
        if 0 < args.max_steps < global_step:
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step


def evaluate(args, data_processor, model, tokenizer, prefix=""):
    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    dataset = data_processor.load_and_cache_data("eval", tokenizer, args.data_tag)
    eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler,
                                 drop_last=True,
                                 batch_size=args.eval_batch_size)

    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("Num examples = %d", len(dataset))
    logger.info("Batch size = %d", args.eval_batch_size)

    label_truth, y_predicted, z_predicted, m_attn, mask = \
        do_evaluate(tqdm(eval_dataloader, desc="Evaluating"), model, args, during_training=True, with_label=True)

    outputs, results = compute_metrics(label_truth, y_predicted, z_predicted, mask)

    return results


def do_evaluate(dataloader, model, args, during_training=False, with_label=True):
    label_truth = []
    y_predicted = []
    z_predicted = []
    m_attn = []
    mask = []
    for i, batch in enumerate(dataloader):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {
                "claim_input_ids": batch[0],
                "claim_attention_mask": batch[1],
                "qa_input_ids_list": batch[3],
                "qa_attention_mask_list": batch[4],
                "nli_labels": batch[6],
            }
            
            if args.model_type != "distilbert":
                # XLM, DistilBERT, RoBERTa, and XLM-RoBERTa don't use segment_ids
                inputs["claim_token_type_ids"] = batch[2] if args.model_type in ["bert", "xlnet", "albert"] else None
                inputs["qa_token_type_ids_list"] = batch[5] if args.model_type in ["bert", "xlnet", "albert"] else None

            outputs = model(**inputs)

            if during_training and (i < 3 and (args.logic_lambda != 0)):
                logger.warning(f'* m_attn:\n {outputs[-2][:5]}\n')
                logger.warning(f'* Logic outputs:\n {outputs[-1][0][:5]}.\n Labels: {batch[-1][:5]}\n')

            if with_label:
                label_truth += batch[-1].tolist()
            y_predicted += outputs[2].tolist()
            mask += outputs[-1][1].tolist()
            z_predicted += outputs[-1][0].tolist()
            m_attn += outputs[-2].tolist()

    y_predicted = np.argmax(y_predicted, axis=-1).tolist()

    return label_truth, y_predicted, z_predicted, m_attn, mask


def main():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " + ", ".join(mAutoModel.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name",
    )
    parser.add_argument(
        "--data_tag",
        default='default',
        type=str,
        help='Tag to cached data'
    )
    parser.add_argument(
        "--max_seq1_length",
        default=None,
        type=int,
        required=True,
        help="The maximum total input claim sequence length after tokenization. "
             "Sequences longer than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument(
        "--max_seq2_length",
        default=None,
        type=int,
        required=True,
        help="The maximum total input claim sequence length after tokenization. "
             "Sequences longer than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument(
        "--max_num_questions",
        default=None,
        type=int,
        required=True,
        help='The maximum number of evidences.',
    )
    parser.add_argument(
        "--cand_k",
        default=1,
        type=int,
        help='The number of evidential answers out of beam size'
    )
    parser.add_argument(
        '--mask_rate',
        default=0.,
        type=float,
        help="Mask rate of QA"
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )

    # Other parameters
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name",
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help="Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences longer "
             "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument('--logic_lambda', required=True, type=float,
                        help='Regularization term for logic loss, also an indicator for using only logic.')
    parser.add_argument('--prior', default='nli', type=str, choices=['nli', 'uniform', 'logic', 'random'],
                        help='type of prior distribution')
    parser.add_argument('--temperature', required=True, type=float, help='Temperature for gumbel softmax.')

    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Run evaluation during training at each logging step.",
    )
    parser.add_argument(
        "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.",
    )
    parser.add_argument(
        "--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.",
    )
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.",
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
    parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory",
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets",
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
             "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="For distant debugging.")
    args = parser.parse_args()

    if (
            os.path.exists(args.output_dir)
            and os.listdir(args.output_dir)
            and args.do_train
            and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd

        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend="nccl")
        args.n_gpu = 1
    args.device = device

    # Setup logging
    if args.do_train:
        global wdblogger
        tf.io.gfile.makedirs(args.output_dir)
        wdblogger = WandbLogger(name=os.path.basename(args.output_dir))
        wdblogger.log_hyperparams(args)
        wdblogger.save()
        log_file = os.path.join(args.output_dir, 'train.log')
        init_logger(logging.INFO if args.local_rank in [-1, 0] else logging.WARN, log_file)

    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )

    # Set seed
    set_seed(args)

    # Prepare task
    data_processor = DataProcessor(
        args.model_name_or_path,
        args.max_seq1_length,
        args.max_seq2_length,
        args.max_num_questions,
        args.cand_k,
        data_dir=args.data_dir,
        cache_dir_name=os.path.basename(args.output_dir),
        overwrite_cache=args.overwrite_cache,
        mask_rate=args.mask_rate
    )

    # Make sure only the first process in distributed training will download model & vocab
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()

    # Load pretrained model and tokenizer
    args.model_type = args.model_type.lower()

    config = AutoConfig.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=3,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = mAutoModel[args.model_type].from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
        logic_lambda=args.logic_lambda,
        m=args.max_num_questions,
        prior=args.prior,
        temperature=args.temperature
    )

    # Make sure only the first process in distributed training will download model & vocab
    if args.local_rank == 0:
        torch.distributed.barrier()

    if args.do_train:
        model.to(args.device)
        wdblogger.watch(model)

    logger.info("Training/evaluation parameters %s", args)

    # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum
    # if args.fp16 is set. Otherwise it'll default to "promote" mode, and we'll get fp32 operations.
    # Note that running `--fp16_opt_level="O2"` will remove the need for this code, but it is still valid.
    if args.fp16:
        try:
            import apex
            apex.amp.register_half_function(torch, "einsum")
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")

    # Training
    if args.do_train:
        global_step, tr_loss = train(args, data_processor, model, tokenizer)
        logger.info("global_step = %s, average loss = %s", global_step, tr_loss)

    # Save the trained model and the tokenizer
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        # Take care of distributed/parallel training
        model_to_save = model.module if hasattr(model, "module") else model
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)

        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))

    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
            )
            logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN)  # Reduce model loading logs

        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
            model = mAutoModel[args.model_type].from_pretrained(
                checkpoint,
                logic_lambda=args.logic_lambda,
                m=args.max_num_questions,
                prior=args.prior,
                temperature=args.temperature
            )
            model.to(args.device)

            # Evaluate
            result = evaluate(args, data_processor, model, tokenizer, prefix=global_step)
            result = dict((k + ("_{}".format(global_step) if global_step else ""), v) for k, v in result.items())
            results.update(result)

    print(results)
    return results


if __name__ == "__main__":
    main()