File size: 8,653 Bytes
7f7285f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20e9c0d
 
7f7285f
 
 
 
 
 
 
20e9c0d
 
7f7285f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f18943d
7f7285f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f18943d
7f7285f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# -*- coding: utf-8 -*-

"""
@Author             : Bao
@Date               : 2020/8/12
@Desc               :
@Last modified by   : Bao
@Last modified date : 2020/8/20
"""

import os
import sys
import logging
import torch
import numpy as np
from tqdm import tqdm
import tensorflow as tf
import ujson as json
import argparse
import cjjpy as cjj
from itertools import repeat
from torch.utils.data import DataLoader, SequentialSampler
from transformers import (
    BertConfig, BertTokenizer, AutoTokenizer,
    RobertaConfig, RobertaTokenizer,
)

try:
    from .modules.data_processor import DataProcessor
    from .plm_checkers import BertChecker, RobertaChecker
    from .utils import read_json_lines, compute_metrics, set_seed
    from .train import do_evaluate
    from ..eval_client.fever_scorer import FeverScorer
except:
    sys.path.append(cjj.AbsParentDir(__file__, '.'))
    sys.path.append(cjj.AbsParentDir(__file__, '..'))
    from eval_client.fever_scorer import FeverScorer
    from modules.data_processor import DataProcessor
    from plm_checkers import BertChecker, RobertaChecker
    from utils import read_json_lines, compute_metrics, set_seed
    from train import do_evaluate

MODEL_MAPPING = {
    'bert': (BertConfig, BertTokenizer, BertChecker),
    'roberta': (RobertaConfig, RobertaTokenizer, RobertaChecker),
}

logger = logging.getLogger(__name__)
label2id = {"SUPPORTS": 2, "REFUTES": 0, 'NOT ENOUGH INFO': 1}
id2label = {v: k for k, v in label2id.items()}


class FactChecker:
    def __init__(self, args, fc_ckpt_dir=None, mask_rate=0.):
        self.data_processor = None
        self.tokenizer = None
        self.model = None
        self.args = args
        self.args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.ckpt = args.fc_dir if fc_ckpt_dir is None else fc_ckpt_dir
        self.mask_rate = mask_rate

        logger.info('Initializing fact checker.')
        self._prepare_ckpt(self.args.model_name_or_path, self.ckpt)
        self.load_model()

    def _prepare_ckpt(self, model_name_or_path, ckpt_dir):
        tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
        tokenizer.save_pretrained(ckpt_dir)

    def load_model(self):
        if self.model is None:
            self.data_processor = DataProcessor(
                self.args.model_name_or_path,
                self.args.max_seq1_length,
                self.args.max_seq2_length,
                self.args.max_num_questions,
                self.args.cand_k,
                mask_rate=self.mask_rate
            )

            _, tokenizer_class, model_class = MODEL_MAPPING[self.args.model_type]
            self.tokenizer = tokenizer_class.from_pretrained(
                self.ckpt,
                do_lower_case=self.args.do_lower_case
            )
            self.model = model_class.from_pretrained(
                self.ckpt,
                from_tf=bool(".ckpt" in self.ckpt),
                logic_lambda=self.args.logic_lambda,
                prior=self.args.prior,
            )
            self.model = torch.nn.DataParallel(self.model)

    def _check(self, inputs: list, batch_size=32, verbose=True):
        dataset = self.data_processor.convert_inputs_to_dataset(inputs, self.tokenizer, verbose=verbose)
        sampler = SequentialSampler(dataset)
        dataloader = DataLoader(dataset, sampler=sampler, batch_size=batch_size)

        with torch.no_grad():
            self.model.to(self.args.device)
            self.model.eval()
            iter = tqdm(dataloader, desc="Fact Checking") if verbose else dataloader
            _, y_predicted, z_predicted, m_attn, mask = \
                do_evaluate(iter, self.model, self.args, during_training=False, with_label=False)

        return y_predicted, z_predicted, m_attn, mask

    def check_from_file(self, in_filename, out_filename, batch_size, verbose=False):
        if 'test' in in_filename:
            raw_inp = f'{os.environ["PJ_HOME"]}/data/fever/shared_task_test.jsonl'
        else:
            raw_inp = None
        tf.io.gfile.makedirs(os.path.dirname(out_filename))
        inputs = list(read_json_lines(in_filename))
        y_predicted, z_predicted, m_attn, mask = self._check(inputs, batch_size)

        z_predicted = repeat(None) if z_predicted is None else z_predicted
        m_attn = repeat(None) if m_attn is None else m_attn
        ordered_results = {}
        with_label = inputs[0].get('label') is not None

        if with_label:
            label_truth = [label2id[x['label']] for x in inputs]
            _, acc_results = compute_metrics(label_truth, y_predicted, z_predicted, mask)
        else:
            acc_results = {}

        for i, (inp, y, z, attn, _mask) in \
                enumerate(zip(inputs, y_predicted, z_predicted, m_attn, mask)):
            result = {'id': inp['id'],
                      'predicted_label': id2label[y],
                      'predicted_evidence': inp.get('predicted_evidence', [])}
            if verbose:
                if i < 5:
                    print("{}\t{}\t{}".format(inp.get("id", i), inp["claim"], y))
                if z is not None and attn is not None:
                    result.update({
                        'z_prob': z[:torch.tensor(_mask).sum()],
                        'm_attn': attn[:torch.tensor(_mask).sum()],
                    })
            ordered_results[inp['id']] = result

        with tf.io.gfile.GFile(out_filename, 'w') as fout:
            if raw_inp:
                with tf.io.gfile.GFile(raw_inp) as f:
                    for line in f:
                        raw_js = json.loads(line)
                        fout.write(json.dumps(ordered_results[raw_js['id']]) + '\n')
            else:
                for k in ordered_results:
                    fout.write(json.dumps(ordered_results[k]) + '\n')

        if ('dev' in in_filename or 'val' in in_filename) and with_label:
            scorer = FeverScorer()
            fever_results = scorer.get_scores(out_filename)
            fever_results.update(acc_results)

            print(fever_results)
            return fever_results

    def check_from_batch(self, inputs: list, verbose=False):
        y_predicted, z_predicted, m_attn, mask = self._check(inputs, len(inputs), verbose)
        return y_predicted, z_predicted, m_attn


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--input', '-i', required=True, type=str,
                        choices=['val', 'eval', 'test', 'demo'])
    parser.add_argument('--output', '-o', default='none', type=str)
    parser.add_argument('--ckpt', '-c', required=True, type=str)
    parser.add_argument('--model_type', default='roberta', type=str,
                        choices=['roberta', 'bert'])
    parser.add_argument('--model_name_or_path', default='roberta-large', type=str)
    parser.add_argument('--verbose', '-v', action='store_true', default=False,
                        help='whether output phrasal veracity or not')
    parser.add_argument('--logic_lambda', '-l', required=True, type=float)
    parser.add_argument('--prior', default='random', type=str, choices=['nli', 'uniform', 'logic', 'random'],
                        help='type of prior distribution')
    parser.add_argument('--mask_rate', '-m', default=0., type=float)

    parser.add_argument('--cand_k', '-k', default=3, type=int)
    parser.add_argument('--max_seq1_length', default=256, type=int)
    parser.add_argument('--max_seq2_length', default=128, type=int)
    parser.add_argument('--max_num_questions', default=8, type=int)
    parser.add_argument('--do_lower_case', action='store_true', default=False)
    parser.add_argument('--batch_size', '-b', default=64, type=int)
    parser.add_argument('--seed', default=42)
    parser.add_argument('--n_gpu', default=4)

    args = parser.parse_args()

    set_seed(args)

    if args.output == 'none':
        args.ckpt = args.ckpt[:-1] if args.ckpt.endswith('/') else args.ckpt
        base_name = os.path.basename(args.ckpt)
        args.output = f'{os.environ["PJ_HOME"]}/results/fact_checking/AAAI22/{args.input}.{args.model_name_or_path}_m{args.mask_rate}_l{args.logic_lambda}_{base_name}_{args.prior}.predictions.jsonl'

    assert args.output.endswith('predictions.jsonl'), \
        f"{args.output} must end with predictions.jsonl"

    args.input = f'{os.environ["PJ_HOME"]}/data/fact_checking/v5/{args.input}.json'

    checker = FactChecker(args, args.ckpt, args.mask_rate)
    fever_results = checker.check_from_file(args.input, args.output, args.batch_size, args.verbose)
    cjj.lark(f"{args.output}: {fever_results}")