File size: 19,703 Bytes
7f7285f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
#!/usr/bin/env python

import argparse
import glob
import logging
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Dict, List, Tuple

import numpy as np
import pytorch_lightning as pl
import torch
from torch.utils.data import DataLoader

from callbacks import Seq2SeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback
from transformers import MBartTokenizer, T5ForConditionalGeneration
try:
    from transformers.modeling_bart import shift_tokens_right
except:
    from transformers.models.bart.modeling_bart import shift_tokens_right
from seq2seq_utils import (
    ROUGE_KEYS,
    LegacySeq2SeqDataset,
    Seq2SeqDataset,
    UniQASeq2SeqDataset,
    assert_all_frozen,
    calculate_bleu,
    calculate_rouge,
    check_output_dir,
    flatten_list,
    freeze_embeds,
    freeze_params,
    get_git_info,
    label_smoothed_nll_loss,
    lmap,
    pickle_save,
    save_git_info,
    save_json,
    use_task_specific_params,
)


# need the parent dir module
sys.path.insert(2, str(Path(__file__).resolve().parents[1]))
from lightning_base import BaseTransformer, add_generic_args, generic_train  # noqa


logger = logging.getLogger(__name__)


class SummarizationModule(BaseTransformer):
    mode = "summarization"
    loss_names = ["loss"]
    metric_names = ROUGE_KEYS
    default_val_metric = "rouge2"

    def __init__(self, hparams, **kwargs):
        if hparams.sortish_sampler and hparams.gpus > 1:
            hparams.replace_sampler_ddp = False
        elif hparams.max_tokens_per_batch is not None:
            if hparams.gpus > 1:
                raise NotImplementedError("Dynamic Batch size does not work for multi-gpu training")
            if hparams.sortish_sampler:
                raise ValueError("--sortish_sampler and --max_tokens_per_batch may not be used simultaneously")

        super().__init__(hparams, num_labels=None, mode=self.mode, **kwargs)
        use_task_specific_params(self.model, "summarization")
        # TODO: hard-encoded length constraint
        self.model.config.min_length = hparams.min_target_length
        self.model.config.max_length = hparams.max_target_length
        save_git_info(self.hparams.output_dir)
        self.metrics_save_path = Path(self.output_dir) / "metrics.json"
        self.hparams_save_path = Path(self.output_dir) / "hparams.pkl"
        pickle_save(self.hparams, self.hparams_save_path)
        self.step_count = 0
        self.metrics = defaultdict(list)
        self.model_type = self.config.model_type
        self.vocab_size = self.config.tgt_vocab_size if self.model_type == "fsmt" else self.config.vocab_size

        self.dataset_kwargs: dict = dict(
            data_dir=self.hparams.data_dir,
            max_source_length=self.hparams.max_source_length,
            prefix=self.model.config.prefix or "",
        )
        n_observations_per_split = {
            "train": self.hparams.n_train,
            "val": self.hparams.n_val,
            "test": self.hparams.n_test,
        }
        self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()}

        self.target_lens = {
            "train": self.hparams.max_target_length,
            "val": self.hparams.val_max_target_length,
            "test": self.hparams.test_max_target_length,
        }
        assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}"
        assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}"
        if self.hparams.freeze_embeds:
            freeze_embeds(self.model)
        if self.hparams.freeze_encoder:
            freeze_params(self.model.get_encoder())
            assert_all_frozen(self.model.get_encoder())

        self.hparams.git_sha = get_git_info()["repo_sha"]
        self.num_workers = hparams.num_workers
        self.decoder_start_token_id = None  # default to config
        if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer):
            self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang]
            self.model.config.decoder_start_token_id = self.decoder_start_token_id

        if 'unifiedqa' in self.hparams.model_name_or_path:
            self.dataset_class = (UniQASeq2SeqDataset)
        else:
            self.dataset_class = (
                Seq2SeqDataset if hasattr(self.tokenizer, "prepare_seq2seq_batch") else LegacySeq2SeqDataset
            )
        self.already_saved_batch = False
        self.eval_beams = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams
        if self.hparams.eval_max_gen_length is not None:
            self.eval_max_length = self.hparams.eval_max_gen_length
        else:
            self.eval_max_length = self.model.config.max_length
        if self.hparams.min_target_length is not None:
            self.min_length = self.hparams.min_target_length
        else:
            self.min_length = self.model.config.min_length

        self.val_metric = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric

    def save_readable_batch(self, batch: Dict[str, torch.Tensor]) -> Dict[str, List[str]]:
        """A debugging utility"""
        readable_batch = {
            k: self.tokenizer.batch_decode(v.tolist()) if "mask" not in k else v.shape for k, v in batch.items()
        }
        save_json(readable_batch, Path(self.output_dir) / "text_batch.json")
        save_json({k: v.tolist() for k, v in batch.items()}, Path(self.output_dir) / "tok_batch.json")

        self.already_saved_batch = True
        return readable_batch

    def forward(self, input_ids, **kwargs):
        return self.model(input_ids, **kwargs)

    def ids_to_clean_text(self, generated_ids: List[int]):
        gen_text = self.tokenizer.batch_decode(
            generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
        )
        return lmap(str.strip, gen_text)

    def _step(self, batch: dict) -> Tuple:
        pad_token_id = self.tokenizer.pad_token_id
        src_ids, src_mask = batch["input_ids"], batch["attention_mask"]
        tgt_ids = batch["labels"]
        if isinstance(self.model, T5ForConditionalGeneration):
            decoder_input_ids = self.model._shift_right(tgt_ids)
        else:
            decoder_input_ids = shift_tokens_right(tgt_ids, pad_token_id)
        if not self.already_saved_batch:  # This would be slightly better if it only happened on rank zero
            batch["decoder_input_ids"] = decoder_input_ids
            self.save_readable_batch(batch)

        outputs = self(src_ids, attention_mask=src_mask, decoder_input_ids=decoder_input_ids, use_cache=False)
        lm_logits = outputs[0]
        if self.hparams.label_smoothing == 0:
            # Same behavior as modeling_bart.py, besides ignoring pad_token_id
            ce_loss_fct = torch.nn.CrossEntropyLoss(ignore_index=pad_token_id)

            assert lm_logits.shape[-1] == self.vocab_size
            loss = ce_loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), tgt_ids.view(-1))
        else:
            lprobs = torch.nn.functional.log_softmax(lm_logits, dim=-1)
            loss, nll_loss = label_smoothed_nll_loss(
                lprobs, tgt_ids, self.hparams.label_smoothing, ignore_index=pad_token_id
            )
        return (loss,)

    @property
    def pad(self) -> int:
        return self.tokenizer.pad_token_id

    def training_step(self, batch, batch_idx) -> Dict:
        loss_tensors = self._step(batch)

        logs = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
        # tokens per batch
        logs["tpb"] = batch["input_ids"].ne(self.pad).sum() + batch["labels"].ne(self.pad).sum()
        logs["bs"] = batch["input_ids"].shape[0]
        logs["src_pad_tok"] = batch["input_ids"].eq(self.pad).sum()
        logs["src_pad_frac"] = batch["input_ids"].eq(self.pad).float().mean()
        # TODO(SS): make a wandb summary metric for this
        return {"loss": loss_tensors[0], "log": logs}

    def validation_step(self, batch, batch_idx) -> Dict:
        return self._generative_step(batch)

    def validation_epoch_end(self, outputs, prefix="val") -> Dict:
        self.step_count += 1
        losses = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names}
        loss = losses["loss"]
        generative_metrics = {
            k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"]
        }
        metric_val = (
            generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric]
        )
        metric_tensor: torch.FloatTensor = torch.tensor(metric_val).type_as(loss)
        generative_metrics.update({k: v.item() for k, v in losses.items()})
        losses.update(generative_metrics)
        all_metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()}
        all_metrics["step_count"] = self.step_count
        self.metrics[prefix].append(all_metrics)  # callback writes this to self.metrics_save_path
        preds = flatten_list([x["preds"] for x in outputs])
        return {
            "log": all_metrics,
            "preds": preds,
            f"{prefix}_loss": loss,
            f"{prefix}_{self.val_metric}": metric_tensor,
        }

    def calc_generative_metrics(self, preds, target) -> Dict:
        return calculate_rouge(preds, target)

    def _generative_step(self, batch: dict) -> dict:
        t0 = time.time()

        # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens')
        generated_ids = self.model.generate(
            batch["input_ids"],
            attention_mask=batch["attention_mask"],
            use_cache=True,
            decoder_start_token_id=self.decoder_start_token_id,
            num_beams=self.eval_beams,
            max_length=self.eval_max_length,
            min_length=self.min_length
        )
        gen_time = (time.time() - t0) / batch["input_ids"].shape[0]
        preds: List[str] = self.ids_to_clean_text(generated_ids)
        target: List[str] = self.ids_to_clean_text(batch["labels"])
        loss_tensors = self._step(batch)
        base_metrics = {name: loss for name, loss in zip(self.loss_names, loss_tensors)}
        rouge: Dict = self.calc_generative_metrics(preds, target)
        summ_len = np.mean(lmap(len, generated_ids))
        base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=target, **rouge)
        return base_metrics

    def test_step(self, batch, batch_idx):
        return self._generative_step(batch)

    def test_epoch_end(self, outputs):
        return self.validation_epoch_end(outputs, prefix="test")

    def get_dataset(self, type_path) -> Seq2SeqDataset:
        n_obs = self.n_obs[type_path]
        max_target_length = self.target_lens[type_path]
        dataset = self.dataset_class(
            self.tokenizer,
            type_path=type_path,
            n_obs=n_obs,
            max_target_length=max_target_length,
            **self.dataset_kwargs,
        )
        return dataset

    def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False) -> DataLoader:
        dataset = self.get_dataset(type_path)

        if self.hparams.sortish_sampler and type_path != "test" and type_path != "val":
            sampler = dataset.make_sortish_sampler(batch_size, distributed=self.hparams.gpus > 1)
            return DataLoader(
                dataset,
                batch_size=batch_size,
                collate_fn=dataset.collate_fn,
                shuffle=False,
                num_workers=self.num_workers,
                sampler=sampler,
            )

        elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val":
            batch_sampler = dataset.make_dynamic_sampler(
                self.hparams.max_tokens_per_batch, distributed=self.hparams.gpus > 1
            )
            return DataLoader(
                dataset,
                batch_sampler=batch_sampler,
                collate_fn=dataset.collate_fn,
                # shuffle=False,
                num_workers=self.num_workers,
                # batch_size=None,
            )
        else:
            return DataLoader(
                dataset,
                batch_size=batch_size,
                collate_fn=dataset.collate_fn,
                shuffle=shuffle,
                num_workers=self.num_workers,
                sampler=None,
            )

    def train_dataloader(self) -> DataLoader:
        dataloader = self.get_dataloader("train", batch_size=self.hparams.train_batch_size, shuffle=True)
        return dataloader

    def val_dataloader(self) -> DataLoader:
        return self.get_dataloader("val", batch_size=self.hparams.eval_batch_size)

    def test_dataloader(self) -> DataLoader:
        return self.get_dataloader("test", batch_size=self.hparams.eval_batch_size)

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        BaseTransformer.add_model_specific_args(parser, root_dir)
        add_generic_args(parser, root_dir)
        parser.add_argument(
            "--min_target_length",
            default=1,
            type=int,
            help="The minimum total target sequence length after tokenization.",
        )
        parser.add_argument(
            "--max_source_length",
            default=1024,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
        parser.add_argument(
            "--max_target_length",
            default=56,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
        parser.add_argument(
            "--val_max_target_length",
            default=142,  # these defaults are optimized for CNNDM. For xsum, see README.md.
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
        parser.add_argument(
            "--test_max_target_length",
            default=142,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )
        parser.add_argument("--freeze_encoder", action="store_true")
        parser.add_argument("--freeze_embeds", action="store_true")
        parser.add_argument("--sortish_sampler", action="store_true", default=False)
        parser.add_argument("--overwrite_output_dir", action="store_true", default=False)
        parser.add_argument("--max_tokens_per_batch", type=int, default=None)
        parser.add_argument("--logger_name", type=str, choices=["default", "wandb", "wandb_shared"], default="default")
        parser.add_argument("--n_train", type=int, default=-1, required=False, help="# examples. -1 means use all.")
        parser.add_argument("--n_val", type=int, default=500, required=False, help="# examples. -1 means use all.")
        parser.add_argument("--n_test", type=int, default=-1, required=False, help="# examples. -1 means use all.")
        parser.add_argument(
            "--task", type=str, default="summarization", required=False, help="# examples. -1 means use all."
        )
        parser.add_argument("--label_smoothing", type=float, default=0.0, required=False)
        parser.add_argument("--src_lang", type=str, default="", required=False)
        parser.add_argument("--tgt_lang", type=str, default="", required=False)
        parser.add_argument("--eval_beams", type=int, default=None, required=False)
        parser.add_argument(
            "--val_metric", type=str, default=None, required=False, choices=["bleu", "rouge2", "loss", None]
        )
        parser.add_argument("--eval_max_gen_length", type=int, default=None, help="never generate more than n tokens")
        parser.add_argument("--save_top_k", type=int, default=1, required=False, help="How many checkpoints to save")
        parser.add_argument(
            "--early_stopping_patience",
            type=int,
            default=-1,
            required=False,
            help="-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So val_check_interval will effect it.",
        )
        return parser


class TranslationModule(SummarizationModule):
    mode = "translation"
    loss_names = ["loss"]
    metric_names = ["bleu"]
    default_val_metric = "bleu"

    def __init__(self, hparams, **kwargs):
        super().__init__(hparams, **kwargs)
        self.dataset_kwargs["src_lang"] = hparams.src_lang
        self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang

    def calc_generative_metrics(self, preds, target) -> dict:
        return calculate_bleu(preds, target)


def main(args, model=None) -> SummarizationModule:
    Path(args.output_dir).mkdir(exist_ok=True)
    check_output_dir(args, expected_items=3)

    if model is None:
        if "summarization" in args.task:
            model: SummarizationModule = SummarizationModule(args)
        else:
            model: SummarizationModule = TranslationModule(args)
    dataset = Path(args.data_dir).name
    if (
        args.logger_name == "default"
        or args.fast_dev_run
        or str(args.output_dir).startswith("/tmp")
        or str(args.output_dir).startswith("/var")
    ):
        logger = True  # don't pollute wandb logs unnecessarily
    elif args.logger_name == "wandb":
        from pytorch_lightning.loggers import WandbLogger

        project = os.environ.get("WANDB_PROJECT", dataset)
        logger = WandbLogger(name=model.output_dir.name, project=project)

    elif args.logger_name == "wandb_shared":
        from pytorch_lightning.loggers import WandbLogger

        logger = WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}")

    if args.early_stopping_patience >= 0:
        es_callback = get_early_stopping_callback(model.val_metric, args.early_stopping_patience)
    else:
        es_callback = False

    lower_is_better = args.val_metric == "loss"
    trainer: pl.Trainer = generic_train(
        model,
        args,
        logging_callback=Seq2SeqLoggingCallback(),
        checkpoint_callback=get_checkpoint_callback(
            args.output_dir, model.val_metric, args.save_top_k, lower_is_better
        ),
        early_stopping_callback=es_callback,
        logger=logger,
    )
    pickle_save(model.hparams, model.output_dir / "hparams.pkl")
    if not args.do_predict:
        return model

    model.hparams.test_checkpoint = ""
    checkpoints = list(sorted(glob.glob(os.path.join(args.output_dir, "*.ckpt"), recursive=True)))
    if checkpoints:
        model.hparams.test_checkpoint = checkpoints[-1]
        trainer.resume_from_checkpoint = checkpoints[-1]
    trainer.logger.log_hyperparams(model.hparams)

    # test() without a model tests using the best checkpoint automatically
    trainer.test()
    return model


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser = pl.Trainer.add_argparse_args(parser)
    parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())

    args = parser.parse_args()

    main(args)